The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Rank and Social Hierarchy for Gregarious Animals

Julia P S Valente, Matheus Deniz, Karolini T de Sousa

##Description

The “socialh” package is a set of functions developed to facilitate the establishment of the rank and social hierarchy for gregarious animals by the Si method developed by Kondo & Hurnik (1990). It is also possible to determine the number of agonistic interactions between two individuals, sociometric and dyadics matrix from dataset obtained through electronic bins.

##Function description

Function Description
replacement Identify replacements between actor and reactor from electronic bins data.
smatrix Build a square matrix contained dyadic frequency of dominance-related behaviors.
dmatrix Determine the Sij dyadic dominance relationship from a sociomatrix.
dvalue Determine the dominance value, social rank and hierarchy from Sij dyadic.
landau_index Calculate the linearity index developed by Landau (1951).
devries_index Calculate the linearity index improved by de Vries (1995).

##Application

#First, install and load the socialh R package
install.packages(socialh)
library(socialh)

#Load the dataset
exemple.data <- read.csv(behaviour_data.csv)

# Apply the replacement(x, sec) function to create a data table with actor and reactor and save as an object to use later.
replace <- replacement (exemple.data, 14)
head(replace)

#Use the smatrix() function to create sociometrix by a replacemente data table and save as an object to use later. 
social <- smatrix (replace)
head(social)

#            actor
#  reactor   2164251 2164252 2164255 2164259 2164261 2164263 
#  2164251      0      32      62      17      37      23
#  2164252     43       0      10      19       8      14
#  2164255     56      12       0       7      26      16
#  2164259     15       5      10       0       3      10
#  2164261     34       9      37       6       0      15
#  2164263     26      16      16      11       8       0

#Apply the dmatrix()function to transform the sociometrix in a dyadic matrix and save as an object to use later.
dyadic <- dmatrix (social)
head(dyadic)

#            actor
#  reactor   2164251 2164252 2164255 2164259 2164261 2164263 
#  2164251       0      -1       1       1       1      -1
#  2164252       1       0      -1       1      -1      -1
#  2164255      -1       1       0      -1      -1       0
#  2164259      -1      -1       1       0      -1      -1
#  2164261      -1       1       1       1       0       1
#  2164263       1       1       0       1      -1       0

#Employ the dvalue()function to determine dominance value, social rank and social hierarchy by a dyadic matrix.
dominance <- dvalue (dyadic)
head(dominance)
#   dominance_value animal_id social_hierarchy social_rank
#1:       -46        2164494     subordinate     lower
#2:       -37        2164490     subordinate     lower
#3:       -36        2164482     subordinate     lower
#4:       -30        2164477     subordinate     lower
#5:       -28        2164265     subordinate     lower
#6:       -27        2164529     subordinate     lower
tail(dominance)
#   dominance_value animal_id social_hierarchy social_rank
#1:        23        2164285     dominant        high
#2:        26        2164381     dominant        high
#3:        27        2164332     dominant        high
#4:        29        2164308     dominant        high
#5:        30        2164267     dominant        high
#6:        35        2164321     dominant        high

#Apply the landau_index()function to determine the linearity index by a dyadic matrix.
landau <- landau_index (dyadic)
print(landau)
#[1] 0.1743385

#Apply the devries_index()function to determine the improved linearity index by a dyadic matrix and a sociomatrix.
devries <- landau_index (dyadic, social)
print(devries)
#[1] 0.1754908

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.