The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
SVD.pls <- function(x, y, n.components = NULL) {
# Step 1: Center and scale X and Y
X <- scale(x, center = TRUE, scale = TRUE)
Y <- scale(y, center = TRUE, scale = TRUE)
x.mean <- attr(X, "scaled:center")
x.sd <- attr(X, "scaled:scale")
y.mean <- attr(Y, "scaled:center")
y.sd <- attr(Y, "scaled:scale")
n <- nrow(X)
p <- ncol(X)
q <- ncol(Y)
# Determine number of components
rank_X <- qr(X)$rank
if (is.null(n.components)) {
n.components <- rank_X
} else {
n.components <- min(n.components, rank_X)
}
# Preallocate matrices
T <- matrix(0, n, n.components) # X scores
U <- matrix(0, n, n.components) # Y scores
P_loadings <- matrix(0, p, n.components) # X loadings
W <- matrix(0, p, n.components) # X weights
Q_loadings <- matrix(0, q, n.components) # Y loadings (reference)
B_vector <- numeric(n.components)
# Initial total sum of squares
SSX_total <- sum(X^2)
SSY_total <- sum(Y^2)
X_explained <- numeric(n.components)
Y_explained <- numeric(n.components)
# Store initial X and Y
E <- X
F <- Y
for (h in seq_len(n.components)) {
# Step 1: Cross-covariance matrix
R <- t(E) %*% F
# Step 2: SVD of R
svd_R <- svd(R)
w <- svd_R$u[, 1, drop = FALSE]
c <- svd_R$v[, 1, drop = FALSE]
# Step 3: Scores
t <- E %*% w
t <- t / sqrt(sum(t^2)) # normalize t
u <- F %*% c
# Step 4: Loadings
p <- t(E) %*% t
# Step 5: Regression scalar b
b <- drop(t(t) %*% u)
# Step 6: Deflation
E <- E - t %*% t(p)
F <- F - b * t %*% t(c)
# Store results
T[, h] <- t
U[, h] <- u
P_loadings[, h] <- p
W[, h] <- w
Q_loadings[, h] <- c
B_vector[h] <- b
# Explained variance
X_explained[h] <- sum(p^2) / SSX_total * 100
Y_explained[h] <- (b^2) / SSY_total * 100
}
# Cumulative variance explained
X_cum_explained <- cumsum(X_explained)
Y_cum_explained <- cumsum(Y_explained)
# Clean up effective components
effective_components <- sum(B_vector != 0)
P_loadings <- P_loadings[, seq_len(effective_components), drop = FALSE]
Q_loadings <- Q_loadings[, seq_len(effective_components), drop = FALSE]
W <- W[, seq_len(effective_components), drop = FALSE]
T <- T[, seq_len(effective_components), drop = FALSE]
U <- U[, seq_len(effective_components), drop = FALSE]
B_vector <- B_vector[seq_len(effective_components)]
X_explained <- X_explained[seq_len(effective_components)]
Y_explained <- Y_explained[seq_len(effective_components)]
X_cum_explained <- X_cum_explained[seq_len(effective_components)]
Y_cum_explained <- Y_cum_explained[seq_len(effective_components)]
# Normalize C (Y weights)
C <- apply(Q_loadings, 2, function(c) c / sqrt(sum(c^2)))
# Pseudo-inverse of P_loadings
svd_P <- svd(P_loadings)
d_inv <- ifelse(svd_P$d > .Machine$double.eps, 1 / svd_P$d, 0)
P_pinv <- t(svd_P$v %*% diag(d_inv) %*% t(svd_P$u))
P_pinv <- P_pinv[, seq_len(effective_components), drop = FALSE]
# Final scaled coefficients
B_scaled <- P_pinv %*% diag(B_vector) %*% t(Q_loadings)
# Rescale to original units
B_original <- sweep(B_scaled, 2, y.sd, "*")
B_original <- sweep(B_original, 1, x.sd, "/")
rownames(B_original) <- colnames(x)
colnames(B_original) <- colnames(y)
intercept <- rep(0, length(y.mean))
names(intercept) <- colnames(y)
list(
T = T, # X scores
U = U, # Y scores
W = W, # X weights
C = C, # Y weights (normalized)
P_loadings = P_loadings, # X loadings (reference)
Q_loadings = Q_loadings, # Y loadings (reference)
B_vector = B_vector,
coefficients = B_original,
intercept = intercept,
X_explained = X_explained,
Y_explained = Y_explained,
X_cum_explained = X_cum_explained,
Y_cum_explained = Y_cum_explained
)
}These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.