The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Smooth Generalized Normal Distribution

To begin, load the package.

library(smoothic)

Boston Housing Data

Perform automatic variable selection using a smooth information criterion.

fit <- smoothic(
  formula = lcmedv ~ .,
  data = bostonhouseprice2,
  family = "sgnd", # Smooth Generalized Normal Distribution
  model = "mpr" # model location and scale
)

Display the estimates and standard errors.

summary(fit)
#> Call:
#> smoothic(formula = lcmedv ~ ., data = bostonhouseprice2, family = "sgnd", 
#>     model = "mpr")
#> Family:
#> [1] "sgnd"
#> Model:
#> [1] "mpr"
#> 
#> Coefficients:
#> 
#> Location:
#>                     Estimate          SE       Z    Pvalue    
#> intercept_0_beta  3.61174584  0.08181155 44.1471 < 2.2e-16 ***
#> crim_1_beta      -0.02032255  0.00505227 -4.0225 7.082e-05 ***
#> zn_2_beta                  0           0       0         0    
#> indus_3_beta               0           0       0         0    
#> rm_4_beta         0.23357173  0.01171721 19.9341 < 2.2e-16 ***
#> age_5_beta       -0.00106083  0.00034141 -3.1072 0.0013172 ** 
#> rad_6_beta        0.00883974  0.00225510  3.9199 9.996e-05 ***
#> ptratio_7_beta   -0.02583598  0.00261809 -9.8683 3.944e-16 ***
#> lnox_8_beta      -0.28434660  0.08286384 -3.4315 0.0004889 ***
#> ldis_9_beta      -0.16025230  0.02294754 -6.9834 5.105e-10 ***
#> ltax_10_beta     -0.18420684  0.02140118 -8.6073 2.001e-13 ***
#> llstat_11_beta   -0.17153333  0.01837441 -9.3354 4.535e-15 ***
#> chast_12_beta     0.05015814  0.01969757  2.5464 0.0064919 ** 
#> 
#> Scale:
#>                    Estimate        SE       Z    Pvalue    
#> intercept_0_alpha -9.654035  2.288128 -4.2192 3.593e-05 ***
#> crim_1_alpha       0.019804  0.015717  1.2601 0.1328128    
#> zn_2_alpha                0         0       0         0    
#> indus_3_alpha     -0.032281  0.022037 -1.4648 0.0875849 .  
#> rm_4_alpha        -0.177752  0.102209 -1.7391 0.0482274 *  
#> age_5_alpha               0         0       0         0    
#> rad_6_alpha        0.033590  0.017613  1.9072 0.0327278 *  
#> ptratio_7_alpha           0         0       0         0    
#> lnox_8_alpha      -0.378692  0.818555 -0.4626 0.5116273    
#> ldis_9_alpha      -1.040374  0.269083 -3.8664 0.0001197 ***
#> ltax_10_alpha      1.354650  0.389785  3.4754 0.0004258 ***
#> llstat_11_alpha           0         0       0         0    
#> chast_12_alpha            0         0       0         0    
#> 
#> Shape:
#>                   Estimate      SE     Z   Pvalue   
#> intercept_0_nu     0.30119 0.10397 2.897 0.002437 **
#> 
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> Kappa Estimate:
#> [1] 1.551471
#> Penalized Likelihood:
#> [1] 220.9246
#> IC Value:
#> [1] -441.8492

fit$kappa # shape estimate
#> [1] 1.551471

Plot the standardized coefficient values with respect to the epsilon-telescope.

plot_paths(fit)

Plot the model-based conditional density curves.

plot_effects(fit,
             what = c("ltax", "rm", "ldis"), # or "all" for all selected variables
             density_range = c(2.25, 3.75))

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.