| Type: | Package | 
| Title: | S-LASSO Estimator for the Function-on-Function Linear Regression | 
| Version: | 1.0.0 | 
| Description: | Implements the smooth LASSO estimator for the function-on-function linear regression model described in Centofanti et al. (2020) <doi:10.48550/arXiv.2007.00529>. | 
| License: | GPL (≥ 3) | 
| Encoding: | UTF-8 | 
| RoxygenNote: | 7.1.2 | 
| LinkingTo: | Rcpp, RcppArmadillo | 
| Depends: | inline | 
| Imports: | Rcpp, RcppArmadillo, fda, fda.usc, matrixcalc, parallel, matrixStats, MASS, plot3D, methods, cxxfunplus | 
| URL: | https://github.com/unina-sfere/slasso | 
| BugReports: | https://github.com/unina-sfere/slasso | 
| SystemRequirements: | GNU make | 
| Suggests: | knitr, rmarkdown, testthat | 
| NeedsCompilation: | yes | 
| Packaged: | 2021-10-14 12:23:55 UTC; fabio | 
| Author: | Fabio Centofanti [cre, aut], Antonio Lepore [aut], Simone Vantini [aut], Matteo Fontana [aut] | 
| Maintainer: | Fabio Centofanti <fabio.centofanti@unina.it> | 
| Repository: | CRAN | 
| Date/Publication: | 2021-10-15 07:40:02 UTC | 
Smooth LASSO Estimator for the Function-on-Function Linear Regression Model
Description
Implements the Smooth LASSO Estimator for the Function-on-Function Linear Regression Model described in Centofanti et al. (2020) <arXiv:2007.00529>.
Details
| Package: | slasso | 
| Type: | Package | 
| Version: | 1.0.0 | 
| Date: | 2021-10-13 | 
| License: | GPL (>= 3) | 
Author(s)
Fabio Centofanti, Matteo Fontana, Antonio Lepore, Simone Vantini
References
Centofanti, F., Fontana, M., Lepore, A., & Vantini, S. (2020). Smooth LASSO Estimator for the Function-on-Function Linear Regression Model. arXiv preprint arXiv:2007.00529.
See Also
Examples
library(slasso)
data<-simulate_data("Scenario II",n_obs=150)
X_fd=data$X_fd
Y_fd=data$Y_fd
domain=c(0,1)
n_basis_s<-30
n_basis_t<-30
breaks_s<-seq(0,1,length.out = (n_basis_s-2))
breaks_t<-seq(0,1,length.out = (n_basis_t-2))
basis_s <- fda::create.bspline.basis(domain,breaks=breaks_s)
basis_t <- fda::create.bspline.basis(domain,breaks=breaks_t)
mod_slasso_cv<-slasso.fr_cv(Y_fd = Y_fd,X_fd=X_fd,basis_s=basis_s,basis_t=basis_t,
lambda_L_vec = 10^seq(0,1,by=1),lambda_s_vec = 10^-9,lambda_t_vec = 10^-7,
B0=NULL,max_iterations=10,K=2,invisible=1,ncores=1)
mod_slasso<-slasso.fr(Y_fd = Y_fd,X_fd=X_fd,basis_s=basis_s,basis_t=basis_t,
lambda_L = 10^0.7,lambda_s =10^-5,lambda_t = 10^-6,B0 =NULL,invisible=1,max_iterations=10)
plot(mod_slasso_cv)
plot(mod_slasso)
Plot the results of the S-LASSO method
Description
This function provides plots of the S-LASSO coefficient function estimate when applied to the output of slasso.fr, whereas
provides the cross-validation plots when applied to the output of slasso.fr_cv. In the latter case the first plot displays the CV values as a function of  lambda_L, lambda_s and lambda_t, and
the second plot displays the CV values as a function of lambda_L with lambda_s and lambda_t fixed at their optimal values.
Usage
## S3 method for class 'slasso_cv'
plot(x, ...)
## S3 method for class 'slasso'
plot(x, ...)
Arguments
| x | The output of  either  | 
| ... | No additional parameters, called for side effects. | 
Value
No return value, called for side effects.
Examples
library(slasso)
data<-simulate_data("Scenario II",n_obs=150)
X_fd=data$X_fd
Y_fd=data$Y_fd
domain=c(0,1)
n_basis_s<-30
n_basis_t<-30
breaks_s<-seq(0,1,length.out = (n_basis_s-2))
breaks_t<-seq(0,1,length.out = (n_basis_t-2))
basis_s <- fda::create.bspline.basis(domain,breaks=breaks_s)
basis_t <- fda::create.bspline.basis(domain,breaks=breaks_t)
mod_slasso<-slasso.fr(Y_fd = Y_fd,X_fd=X_fd,basis_s=basis_s,basis_t=basis_t,
lambda_L = -1.5,lambda_s =-8,lambda_t = -7,B0 =NULL,invisible=1,max_iterations=10)
plot(mod_slasso)
Simulate data through the function-on-function linear regression model
Description
Generate synthetic data as in the simulation study of Centofanti et al. (2020).
Usage
simulate_data(scenario, n_obs = 3000, type_x = "Bspline")
Arguments
| scenario | A character strings indicating the scenario considered. It could be "Scenario I", "Scenario II", "Scenario III", and "Scenario IV". | 
| n_obs | Number of observations. | 
| type_x | Covariate generating mechanism, either Bspline or Brownian. | 
Value
A list containing the following arguments:
X: Covariate matrix, where  the rows  correspond to argument values and columns to replications.
Y: Response matrix, where  the rows  correspond to argument values and columns to replications.
X_fd: Coavariate functions.
Y_fd: Response functions.
clus: True cluster membership vector.
References
Centofanti, F., Fontana, M., Lepore, A., & Vantini, S. (2020). Smooth LASSO Estimator for the Function-on-Function Linear Regression Model. arXiv preprint arXiv:2007.00529.
Examples
library(slasso)
data<-simulate_data("Scenario II",n_obs=150)
Smooth LASSO estimator for the function-on-function linear regression model
Description
The smooth LASSO (S-LASSO) method for the function-on-function linear regression model provides interpretable coefficient function estimates that are both locally sparse and smooth (Centofanti et al., 2020).
Usage
slasso.fr(
  Y_fd,
  X_fd,
  basis_s,
  basis_t,
  lambda_L,
  lambda_s,
  lambda_t,
  B0 = NULL,
  ...
)
Arguments
| Y_fd | An object of class fd corresponding to the response functions. | 
| X_fd | An object of class fd corresponding to the covariate functions. | 
| basis_s | B-splines basis along the  | 
| basis_t | B-splines basis along the  | 
| lambda_L | Regularization parameter of the functional LASSO penalty. | 
| lambda_s | Regularization parameter of the smoothness penalty along the  | 
| lambda_t | Regularization parameter of the smoothness penalty along the  | 
| B0 | Initial estimator of the basis coefficients matrix of the coefficient function. Should have dimensions in accordance with the basis dimensions of  | 
| ... | Other arguments to be passed to the Orthant-Wise Limited-memory Quasi-Newton optimization function. See the  | 
Value
A list containing the following arguments:
-  B: The basis coefficients matrix estimate of the coefficient function.
-  Beta_hat_fd: The coefficient function estimate of class bifd.
-  alpha: The intercept function estimate.
-  lambdas_L: Regularization parameter of the functional LASSO penalty.
-  lambda_s: Regularization parameter of the smoothness penalty along thes-direction.
-  lambda_t: Regularization parameter of the smoothness penalty along thet-direction.
-  Y_fd: The response functions.
-  X_fd: The covariate functions.
-  per_0: The fraction of domain where the coefficient function is zero.
-  type: The output type.
References
Centofanti, F., Fontana, M., Lepore, A., & Vantini, S. (2020). Smooth LASSO Estimator for the Function-on-Function Linear Regression Model. arXiv preprint arXiv:2007.00529.
See Also
Examples
library(slasso)
data<-simulate_data("Scenario II",n_obs=150)
X_fd=data$X_fd
Y_fd=data$Y_fd
domain=c(0,1)
n_basis_s<-30
n_basis_t<-30
breaks_s<-seq(0,1,length.out = (n_basis_s-2))
breaks_t<-seq(0,1,length.out = (n_basis_t-2))
basis_s <- fda::create.bspline.basis(domain,breaks=breaks_s)
basis_t <- fda::create.bspline.basis(domain,breaks=breaks_t)
mod_slasso<-slasso.fr(Y_fd = Y_fd,X_fd=X_fd,basis_s=basis_s,basis_t=basis_t,
lambda_L = -1.5,lambda_s =-8,lambda_t = -7,B0 =NULL,invisible=1,max_iterations=10)
Cross-validation for the S-LASSO estimator
Description
K-fold cross-validation procedure to choose the tuning parameters for the S-LASSO estimator (Centofanti et al., 2020).
Usage
slasso.fr_cv(
  Y_fd,
  X_fd,
  basis_s,
  basis_t,
  K = 10,
  kss_rule_par = 0.5,
  lambda_L_vec = NULL,
  lambda_s_vec = NULL,
  lambda_t_vec = NULL,
  B0 = NULL,
  ncores = 1,
  ...
)
Arguments
| Y_fd | An object of class fd corresponding to the response functions. | 
| X_fd | An object of class fd corresponding to the covariate functions. | 
| basis_s | B-splines basis along the  | 
| basis_t | B-splines basis along the  | 
| K | Number of folds. Default is 10. | 
| kss_rule_par | Parameter of the  | 
| lambda_L_vec | Vector of regularization parameters of the functional LASSO penalty. | 
| lambda_s_vec | Vector of regularization parameters of the smoothness penalty along the  | 
| lambda_t_vec | Vector of regularization parameters of the smoothness penalty along the  | 
| B0 | Initial estimator of the basis coefficients matrix of the coefficient function. Should have dimensions in accordance with the basis dimensions of  | 
| ncores | If  | 
| ... | Other arguments to be passed to the Orthant-Wise Limited-memory Quasi-Newton optimization function. See the  | 
Value
A list containing the following arguments:
-  lambda_opt_vec: Vector of optimal tuning parameters.
-  CV: Estimated prediction errors.
-  CV_sd: Standard errors of the estimated prediction errors.
-  per_0: The fractions of domain where the coefficient function is zero for all the tuning parameters combinations.
-  comb_list: The combinations oflambda_L,lambda_sandlambda_texplored.
-  Y_fd: The response functions.
-  X_fd: The covariate functions.
References
Centofanti, F., Fontana, M., Lepore, A., & Vantini, S. (2020). Smooth LASSO Estimator for the Function-on-Function Linear Regression Model. arXiv preprint arXiv:2007.00529.
See Also
Examples
library(slasso)
data<-simulate_data("Scenario II",n_obs=150)
X_fd=data$X_fd
Y_fd=data$Y_fd
domain=c(0,1)
n_basis_s<-60
n_basis_t<-60
breaks_s<-seq(0,1,length.out = (n_basis_s-2))
breaks_t<-seq(0,1,length.out = (n_basis_t-2))
basis_s <- fda::create.bspline.basis(domain,breaks=breaks_s)
basis_t <- fda::create.bspline.basis(domain,breaks=breaks_t)
mod_slasso_cv<-slasso.fr_cv(Y_fd = Y_fd,X_fd=X_fd,basis_s=basis_s,basis_t=basis_t,
lambda_L_vec=seq(0,1,by=1),lambda_s_vec=c(-9),lambda_t_vec=-7,B0=NULL,
max_iterations=10,K=2,invisible=1,ncores=1)