The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

singleCellHaystack: A Universal Differential Expression Prediction Tool for Single-Cell and Spatial Genomics Data

One key exploratory analysis step in single-cell genomics data analysis is the prediction of features with different activity levels. For example, we want to predict differentially expressed genes (DEGs) in single-cell RNA-seq data, spatial DEGs in spatial transcriptomics data, or differentially accessible regions (DARs) in single-cell ATAC-seq data. 'singleCellHaystack' predicts differentially active features in single cell omics datasets without relying on the clustering of cells into arbitrary clusters. 'singleCellHaystack' uses Kullback-Leibler divergence to find features (e.g., genes, genomic regions, etc) that are active in subsets of cells that are non-randomly positioned inside an input space (such as 1D trajectories, 2D tissue sections, multi-dimensional embeddings, etc). For the theoretical background of 'singleCellHaystack' we refer to our original paper Vandenbon and Diez (Nature Communications, 2020) <doi:10.1038/s41467-020-17900-3> and our update Vandenbon and Diez (Scientific Reports, 2023) <doi:10.1038/s41598-023-38965-2>.

Version: 1.0.2
Imports: methods, Matrix, splines, ggplot2, reshape2
Suggests: knitr, rmarkdown, testthat, SummarizedExperiment, SingleCellExperiment, SeuratObject, cowplot, wrswoR, sparseMatrixStats, ComplexHeatmap, patchwork
Published: 2024-01-11
DOI: 10.32614/CRAN.package.singleCellHaystack
Author: Alexis Vandenbon ORCID iD [aut, cre], Diego Diez ORCID iD [aut]
Maintainer: Alexis Vandenbon <alexis.vandenbon at gmail.com>
BugReports: https://github.com/alexisvdb/singleCellHaystack/issues
License: MIT + file LICENSE
URL: https://alexisvdb.github.io/singleCellHaystack/, https://github.com/alexisvdb/singleCellHaystack
NeedsCompilation: no
Citation: singleCellHaystack citation info
Materials: NEWS
In views: Omics
CRAN checks: singleCellHaystack results

Documentation:

Reference manual: singleCellHaystack.pdf
Vignettes: Application on toy example

Downloads:

Package source: singleCellHaystack_1.0.2.tar.gz
Windows binaries: r-devel: singleCellHaystack_1.0.2.zip, r-release: singleCellHaystack_1.0.2.zip, r-oldrel: singleCellHaystack_1.0.2.zip
macOS binaries: r-release (arm64): singleCellHaystack_1.0.2.tgz, r-oldrel (arm64): singleCellHaystack_1.0.2.tgz, r-release (x86_64): singleCellHaystack_1.0.2.tgz, r-oldrel (x86_64): singleCellHaystack_1.0.2.tgz
Old sources: singleCellHaystack archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=singleCellHaystack to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.