The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
library('data.table')
library('ggplot2')
library('simphony')
= data.table(amp = c(0, 3, 6), phase = c(0, 0, 6),
featureGroups rhyFunc = c(cos, cos, sin), fracFeatures = c(0.1, 0.8, 0.1))
= simphony(featureGroups)
simData
= mergeSimData(simData)
mergedData = getExpectedAbund(simData$featureMetadata, times = seq(0, 48, 0.25))
expectedTrend = c('feature_01', 'feature_05', 'feature_10')
plotFeatures
ggplot() +
facet_wrap(~ feature) +
geom_line(data = expectedTrend[feature %in% plotFeatures], aes(x = time, y = mu)) +
geom_point(data = mergedData[feature %in% plotFeatures], aes(x = time, y = abund)) +
scale_x_continuous(breaks = seq(0, 48, 8)) +
labs(x = 'Time (h)', y = 'Abundance')
ggplot() +
geom_point(data = simData$featureMetadata, aes(x = factor(amp0), y = factor(feature))) +
labs(x = 'Amplitude', y = 'Feature')
= data.table(amp = 6, phase = -3, rhyFunc = function(x) sign(sin(x)))
featureGroups
= simphony(featureGroups)
simData
= mergeSimData(simData)
mergedData = getExpectedAbund(simData$featureMetadata, times = seq(0, 48, 0.1))
expectedTrend
ggplot() +
geom_line(data = expectedTrend[feature %in% plotFeatures], aes(x = time, y = mu)) +
geom_point(data = mergedData[feature %in% plotFeatures], aes(x = time, y = abund)) +
scale_x_continuous(breaks = seq(0, 48, 8)) +
labs(x = 'Time (h)', y = 'Abundance')
= data.table(amp = c(0, 3))
featureGroups
= simphony(featureGroups, timepointsType = 'specified', nFeatures = nrow(featureGroups),
simData timepoints = c(seq(0, 22, 2), seq(24, 42, 6)))
= mergeSimData(simData)
mergedData = getExpectedAbund(simData$featureMetadata, times = seq(0, 48, 0.25))
expectedTrend
ggplot() +
facet_wrap(~ feature) +
geom_line(data = expectedTrend, aes(x = time, y = mu)) +
geom_point(data = mergedData, aes(x = time, y = abund)) +
scale_x_continuous(breaks = seq(0, 48, 8)) +
labs(x = 'Time (h)', y = 'Abundance')
= data.table(amp = c(0, 3))
featureGroups
= simphony(featureGroups, timepointsType = 'random', nFeatures = nrow(featureGroups),
simData timeRange = c(0, 24), nSamplesPerCond = 20)
= mergeSimData(simData)
mergedData = getExpectedAbund(simData$featureMetadata, times = seq(0, 24, 0.25))
expectedTrend
ggplot() +
facet_wrap(~ feature) +
geom_line(data = expectedTrend, aes(x = time, y = mu)) +
geom_point(data = mergedData, aes(x = time, y = abund)) +
scale_x_continuous(breaks = seq(0, 24, 4)) +
labs(x = 'Time (h)', y = 'Abundance')
= data.table(amp = c(function(tt) 3, function(tt) 3 * 2 ^ (-tt / 24)),
featureGroups base = c(function(tt) tt / 12, function(tt) 0))
= simphony(featureGroups, nFeatures = nrow(featureGroups))
simData
= mergeSimData(simData)
mergedData = getExpectedAbund(simData$featureMetadata, times = seq(0, 48, 0.25))
expectedTrend
ggplot() +
facet_wrap(~ feature) +
geom_line(data = expectedTrend, aes(x = time, y = mu)) +
geom_point(data = mergedData, aes(x = time, y = abund)) +
scale_x_continuous(breaks = seq(0, 48, 8)) +
labs(x = 'Time (h)', y = 'Abundance')
= list(
featureGroupsList data.table(amp = c(1, 2, 2), phase = c(0, -3, 0), period = c(24, 24, 22)),
data.table(amp = c(3, 2, 2), phase = c(0, 3, 0), period = c(24, 24, 26)))
= simphony(featureGroupsList, nFeatures = nrow(featureGroupsList[[1]]))
simData
= mergeSimData(simData)
mergedData = getExpectedAbund(simData$featureMetadata, times = seq(0, 48, 0.25))
expectedTrend
ggplot() +
facet_grid(cond ~ feature) +
geom_line(data = expectedTrend, aes(x = time, y = mu)) +
geom_point(data = mergedData, aes(x = time, y = abund), size = 0.5) +
scale_x_continuous(breaks = seq(0, 48, 8)) +
labs(x = 'Time (h)', y = 'Abundance')
= data.table(amp = 3, base = c(4, 6, 8))
featureGroups = function(x) 3 * defaultDispFunc(x)
dispFunc
= simphony(featureGroups, interval = 4, nFeatures = nrow(featureGroups),
simData family = 'negbinom', dispFunc = dispFunc)
= mergeSimData(simData)
mergedData = getExpectedAbund(simData$featureMetadata, times = seq(0, 48, 0.25))
expectedTrend
ggplot(expectedTrend) +
facet_wrap(. ~ factor(base0)) +
geom_line(data = expectedTrend, aes(x = time, y = mu)) +
geom_point(data = mergedData, aes(x = time, y = log2(abund + 1))) +
scale_x_continuous(breaks = seq(0, 48, 8)) +
labs(x = 'Time (h)', y = expression(log[2] * '(abundance + 1)'))
= data.table(amp = 1, base = 0,
featureGroups rhyFunc = function(x) ifelse(x %% (2 * pi) < pi, 0.5, 4))
= simphony(featureGroups, timeRange = c(0, 24 * 4), interval = 0.1,
simData nReps = 1, nFeatures = 1, family = 'poisson')
= mergeSimData(simData)
mergedData = getExpectedAbund(simData$featureMetadata,
expectedTrend sampleMetadata = simData$sampleMetadata)
ggplot() +
geom_line(data = expectedTrend, aes(x = time, y = mu)) +
geom_point(data = mergedData, aes(x = time, y = abund), shape = 21, size = 1) +
scale_x_continuous(breaks = seq(0, 24 * 4, 12)) +
labs(x = 'Time (h)', y = 'Abundance')
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.