The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Using simphony’s various options

2022-08-08

Load required packages

library('data.table')
library('ggplot2')
library('simphony')

Evenly-spaced timepoints

featureGroups = data.table(amp = c(0, 3, 6), phase = c(0, 0, 6),
                           rhyFunc = c(cos, cos, sin), fracFeatures = c(0.1, 0.8, 0.1))

simData = simphony(featureGroups)

mergedData = mergeSimData(simData)
expectedTrend = getExpectedAbund(simData$featureMetadata, times = seq(0, 48, 0.25))
plotFeatures = c('feature_01', 'feature_05', 'feature_10')

ggplot() +
  facet_wrap(~ feature) +
  geom_line(data = expectedTrend[feature %in% plotFeatures], aes(x = time, y = mu)) +
  geom_point(data = mergedData[feature %in% plotFeatures], aes(x = time, y = abund)) +
  scale_x_continuous(breaks = seq(0, 48, 8)) +
  labs(x = 'Time (h)', y = 'Abundance')


ggplot() +
  geom_point(data = simData$featureMetadata, aes(x = factor(amp0), y = factor(feature))) +
  labs(x = 'Amplitude', y = 'Feature')

Custom rhythm function

featureGroups = data.table(amp = 6, phase = -3, rhyFunc = function(x) sign(sin(x)))

simData = simphony(featureGroups)

mergedData = mergeSimData(simData)
expectedTrend = getExpectedAbund(simData$featureMetadata, times = seq(0, 48, 0.1))

ggplot() +
  geom_line(data = expectedTrend[feature %in% plotFeatures], aes(x = time, y = mu)) +
  geom_point(data = mergedData[feature %in% plotFeatures], aes(x = time, y = abund)) +
  scale_x_continuous(breaks = seq(0, 48, 8)) +
  labs(x = 'Time (h)', y = 'Abundance')

Specified timepoints

featureGroups = data.table(amp = c(0, 3))

simData = simphony(featureGroups, timepointsType = 'specified', nFeatures = nrow(featureGroups),
                   timepoints = c(seq(0, 22, 2), seq(24, 42, 6)))

mergedData = mergeSimData(simData)
expectedTrend = getExpectedAbund(simData$featureMetadata, times = seq(0, 48, 0.25))

ggplot() +
  facet_wrap(~ feature) +
  geom_line(data = expectedTrend, aes(x = time, y = mu)) +
  geom_point(data = mergedData, aes(x = time, y = abund)) +
  scale_x_continuous(breaks = seq(0, 48, 8)) +
  labs(x = 'Time (h)', y = 'Abundance')

Random timepoints

featureGroups = data.table(amp = c(0, 3))

simData = simphony(featureGroups, timepointsType = 'random', nFeatures = nrow(featureGroups),
                   timeRange = c(0, 24), nSamplesPerCond = 20)

mergedData = mergeSimData(simData)
expectedTrend = getExpectedAbund(simData$featureMetadata, times = seq(0, 24, 0.25))

ggplot() +
  facet_wrap(~ feature) +
  geom_line(data = expectedTrend, aes(x = time, y = mu)) +
  geom_point(data = mergedData, aes(x = time, y = abund)) +
  scale_x_continuous(breaks = seq(0, 24, 4)) +
  labs(x = 'Time (h)', y = 'Abundance')

Time-dependent amplitude and base

featureGroups = data.table(amp =  c(function(tt) 3, function(tt) 3 * 2 ^ (-tt / 24)),
                           base = c(function(tt) tt / 12, function(tt) 0))

simData = simphony(featureGroups, nFeatures = nrow(featureGroups))

mergedData = mergeSimData(simData)
expectedTrend = getExpectedAbund(simData$featureMetadata, times = seq(0, 48, 0.25))

ggplot() +
  facet_wrap(~ feature) +
  geom_line(data = expectedTrend, aes(x = time, y = mu)) +
  geom_point(data = mergedData, aes(x = time, y = abund)) +
  scale_x_continuous(breaks = seq(0, 48, 8)) +
  labs(x = 'Time (h)', y = 'Abundance')

Differential rhythmicity between conditions

featureGroupsList = list(
  data.table(amp = c(1, 2, 2), phase = c(0, -3, 0), period = c(24, 24, 22)),
  data.table(amp = c(3, 2, 2), phase = c(0,  3, 0), period = c(24, 24, 26)))

simData = simphony(featureGroupsList, nFeatures = nrow(featureGroupsList[[1]]))

mergedData = mergeSimData(simData)
expectedTrend = getExpectedAbund(simData$featureMetadata, times = seq(0, 48, 0.25))

ggplot() +
  facet_grid(cond ~ feature) +
  geom_line(data = expectedTrend, aes(x = time, y = mu)) +
  geom_point(data = mergedData, aes(x = time, y = abund), size = 0.5) +
  scale_x_continuous(breaks = seq(0, 48, 8)) +
  labs(x = 'Time (h)', y = 'Abundance')

Controlling negative binomial dispersion and base

featureGroups = data.table(amp = 3, base = c(4, 6, 8))
dispFunc = function(x) 3 * defaultDispFunc(x)

simData = simphony(featureGroups, interval = 4, nFeatures = nrow(featureGroups),
                   family = 'negbinom', dispFunc = dispFunc)

mergedData = mergeSimData(simData)
expectedTrend = getExpectedAbund(simData$featureMetadata, times = seq(0, 48, 0.25))

ggplot(expectedTrend) +
  facet_wrap(. ~ factor(base0)) +
  geom_line(data = expectedTrend, aes(x = time, y = mu)) +
  geom_point(data = mergedData, aes(x = time, y = log2(abund + 1))) +
  scale_x_continuous(breaks = seq(0, 48, 8)) +
  labs(x = 'Time (h)', y = expression(log[2] * '(abundance + 1)'))

Poisson sampling at high resolution

featureGroups = data.table(amp = 1, base = 0,
                           rhyFunc = function(x) ifelse(x %% (2 * pi) < pi, 0.5, 4))

simData = simphony(featureGroups, timeRange = c(0, 24 * 4), interval = 0.1,
                   nReps = 1, nFeatures = 1, family = 'poisson')

mergedData = mergeSimData(simData)
expectedTrend = getExpectedAbund(simData$featureMetadata,
                                 sampleMetadata = simData$sampleMetadata)

ggplot() +
  geom_line(data = expectedTrend, aes(x = time, y = mu)) +
  geom_point(data = mergedData, aes(x = time, y = abund), shape = 21, size = 1) +
  scale_x_continuous(breaks = seq(0, 24 * 4, 12)) +
  labs(x = 'Time (h)', y = 'Abundance')

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.