The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Design and Maintenance: Dong Yin, Xuanning
Zhang, Lilin Yin ,Haohao Zhang, and Xiaolei
Liu.
Contributors: Zhenshuang Tang, Jingya Xu,
Xiaohui Yuan, Xiang Zhou, Xinyun Li, and Shuhong Zhao.
If you have any bug reports or questions, please feed back :point_right:here:point_left:.
|
|
|
|
|
WE STRONGLY RECOMMEND TO INSTALL SIMER ON Microsoft R Open (https://mran.microsoft.com/download/).
install.packages("simer")
::install_github("xiaolei-lab/SIMER") devtools
After installed successfully, SIMER
can
be loaded by typing
> library(simer)
Typing ?simer
could get the details of all
parameters.
Genotype data should be
Numeric format (m
rows and n columns,
m is the number of SNPs,
n is the number of individuals). Other
genotype data, such as PLINK
Binary format (details see
http://zzz.bwh.harvard.edu/plink/data.shtml#bed),
VCF, or Hapmap can
be converted to Numeric format using
MVP.Data
function in the rMVP
(https://github.com/xiaolei-lab/rMVP).
genotype.txt
2 | 1 | 0 | 1 | 0 | … | 0 |
1 | 2 | 0 | 1 | 0 | … | 0 |
1 | 1 | 2 | 1 | 0 | … | 0 |
1 | 1 | 0 | 2 | 1 | … | 0 |
0 | 0 | 0 | 0 | 2 | … | 0 |
back to top
A genetic map is necessary in
SIMER
. The first column is the
SNP name, the second column is the
Chromosome ID, the third column is
physical position, the fourth column is
REF, and the fifth column is
ALT. This will be used to generate
annotation data, genotype
data, and phenotype data.
map.txt
SNP | Chrom | BP | REF | ALT |
---|---|---|---|---|
1_10673082 | 1 | 10673082 | T | C |
1_10723065 | 1 | 10723065 | A | G |
1_11407894 | 1 | 11407894 | A | G |
1_11426075 | 1 | 11426075 | T | C |
1_13996200 | 1 | 13996200 | T | C |
1_14638936 | 1 | 14638936 | T | C |
back to top
SIMER
supports user designed
pedigree to control mating process. User
designed pedigree is useful only in userped
reproduction. The first column is sample id,
the second column is paternal id, and the
third column is maternal id. Please make sure
that paternal id and maternal
id can match to genotype
data.
userped.txt
Index | Sire | Dam |
---|---|---|
41 | 1 | 11 |
42 | 1 | 11 |
43 | 1 | 11 |
44 | 1 | 11 |
45 | 2 | 12 |
46 | 2 | 12 |
back to top
At least users should prepare two datasets: genotypic
map and genotype data.
genotype data,
Numeric format (m
rows and n columns,
m is the number of SNPs,
n is the number of individuals)
genotypic map, SNP map information, the first
column is SNP name, the second column is
Chromosome ID, the third column is
physical position, the fourth column is
REF, and the fifth column is
ALT.
<- read.table("genotype.txt")
pop.geno <- read.table("map.txt" , head = TRUE) pop.map
back to top
The mating process can be designed by user-designed
pedigree.
pedigree, pedigree information, the first column is sample id, the second column is paternal id, and the third column is maternal id. Note that the individuals in the pedigree do not need to be sorted by the date of birth, and the missing value can be replaced by NA or 0.
<- read.table("userped.txt", header = TRUE) userped
All simulation processes can be divided into two steps: 1) generation of simulation parameters; 2) run simulation process.
A quick start for Population Simulation is shown below:
# Generate all simulation parameters
<- param.simer(out = "simer")
SP
# Run Simer
<- simer(SP) SP
A quick start for Genotype Simulation is shown below:
# Generate annotation simulation parameters
<- param.annot(species = "pig")
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2)
SP
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP) SP
A quick start for Phenotype Simulation is shown below:
# Generate annotation simulation parameters
<- param.annot(species = "pig")
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2)
SP # Generate phenotype simulation parameters
<- param.pheno(SP = SP, phe.h2A = list(tr1 = 0.3))
SP
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP) SP
Genotype data in
SIMER
is generated randomly or through an
external genotype matrix. Chromosome crossovers and base mutations
depend on block information and recombination information of
Annotation data.
genotype
, main function of Genotype
Simulation:
Paramater | Default | Options | Description |
pop.geno | NULL | big.matrix or matrix | the genotype data. |
incols | 1 | 1 or 2 | ‘1’: one-column genotype represents an individual; ‘2’: two-column genotype represents an individual. |
pop.marker | 1e4 | num | the number of markers. |
pop.ind | 1e2 | num | the number of individuals in the base population. |
prob | NULL | num vector | the genotype code probability. |
rate.mut | 1e-8 | num | the mutation rate of the genotype data. |
annotation
, main function of Annotation
Simulation:
Paramater | Default | Options | Description |
pop.map | NULL | data.frame | the map data with annotation information. |
species | NULL | character | the species of genetic map, which can be “arabidopsis”, “cattle”, “chicken”, “dog”, “horse”, “human”, “maize”, “mice”, “pig”, and “rice”. |
pop.marker | 1e4 | num | the number of markers. |
num.chr | 18 | num | the number of chromosomes. |
len.chr | 1.5e8 | num | the length of chromosomes. |
recom.spot | FALSE | TRUE or FALSE | whether to generate recombination events. |
range.hot | 4:6 | num vector | the recombination times range in the hot spot. |
range.cold | 1:5 | num vector | the recombination times range in the cold spot. |
Users can generate a genetic map by inputting an external genetic map.
# Real genotypic map
<- system.file("extdata", "06map", "pig_map.txt", package = "simer")
mapPath <- read.table(mapPath, header = TRUE)
pop.map
# Generate annotation simulation parameters
<- param.annot(pop.map = pop.map)
SP
# Run annotation simulation
<- annotation(SP) SP
Users can also use the inner real genetic map with
species
, which can be “arabidopsis”, “cattle”, “chicken”,
“dog”, “horse”, “human”, “maize”, “mice”, “pig”, and “rice”.
# Generate annotation simulation parameters
<- param.annot(species = "pig")
SP
# Run annotation simulation
<- annotation(SP) SP
Users can generate a random genetic map with pop.marker
,
num.chr
, and len.chr
.
# Generate annotation simulation parameters
<- param.annot(pop.marker = 1e4, num.chr = 18, len.chr = 1.5e8)
SP
# Run annotation simulation
<- annotation(SP) SP
Users can use real genotype data with specific genetic structure for subsequent simulation.
# Create a genotype matrix
# pop.geno <- read.table("genotype.txt")
# pop.geno <- bigmemory::attach.big.matrix("genotype.geno.desc")
<- matrix(c(0, 1, 2, 0), nrow = 1e4, ncol = 1e2, byrow = TRUE)
pop.geno
# Generate annotation simulation parameters
<- param.annot(pop.marker = 1e4)
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.geno = pop.geno)
SP
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP) SP
Users can also generate genotype matrix with the inner real genetic
map with species
, which can be “arabidopsis”, “cattle”,
“chicken”, “dog”, “horse”, “human”, “maize”, “mice”, “pig”, and
“rice”.
# Generate annotation simulation parameters
<- param.annot(species = "pig")
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2)
SP
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP) SP
Users can also specify pop.marker
and
pop.ind
to generate random genotype
data.
# Generate annotation simulation parameters
<- param.annot(pop.marker = 1e4)
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2)
SP
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP) SP
Users can generate a genotype matrix with complete
linkage disequilibrium by incols = 2
and
cld = TRUE
.
# Generate annotation simulation parameters
<- param.annot(pop.marker = 1e4)
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2, incols = 2, cld = TRUE)
SP
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP) SP
With annotation data, chromosome crossovers and mutations can be added to a genotype matrix.
# Generate annotation simulation parameters
# If recom.spot = TRUE, chromsome crossovers will be added to genotype matrix
<- param.annot(pop.marker = 1e4, recom.spot = TRUE)
SP # Generate genotype simulation parameters
# Base mutation rate of QTN and SNP are 1e8
<- param.geno(SP = SP, pop.ind = 1e2, rate.mut = list(qtn = 1e-8, snp = 1e-8))
SP
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP) SP
Note that recombination only exists in meiosis. Therefore, some
reproduction methods such as clone
do not have
recombination processes. Users can set recom.spot = FALSE
to add only mutations to the genotype matrix.
# Generate annotation simulation parameters
# If recom.spot = FALSE, chromsome crossovers will not be added to genotype matrix
<- param.annot(pop.marker = 1e4, recom.spot = FALSE)
SP # Generate genotype simulation parameters
# Base mutation rate of QTN and SNP are 1e8
<- param.geno(SP = SP, pop.ind = 1e2, rate.mut = list(qtn = 1e-8, snp = 1e-8))
SP
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP) SP
Phenotype data in
SIMER
is generated according to different
models, which include:
(1) Single-Trait Model
(2) Multiple-Trait Model
(3) Repeated Record Model
(4) Genetic Effect Model
(Additive effect,
Dominant effect, and
Genetic-Genetic
interaction effect)
(5) Genetic Model with Varied QTN Effect Distributions
(QTN effect distribution: Normal distribution,
Geometric distribution,
Gamma distribution,
Beta distribution, and their
combination)
(6) Linear Mixed Model (Fixed
effect, Covariate,
Environmental Random
effect, Genetic
Random effect,
Genetic-Environmental
interaction effect, and
Environmental-Environmental
interaction effect)
phenotype
, main function of Phenotype
Simulation:
Paramater | Default | Options | Description |
pop | NULL | data.frame | the population information containing environmental factors and other effects. |
pop.ind | 100 | num | the number of individuals in the base population. |
pop.rep | 1 | num | the repeated times of repeated records. |
pop.rep.bal | TRUE | TRUE or FALSE | whether repeated records are balanced. |
pop.env | NULL | list | a list of environmental factors setting. |
phe.type | list(tr1 = “continuous”) | list | a list of phenotype types. |
phe.model | list(tr1 = “T1 = A + E”) | list | a list of genetic model of phenotype such as “T1 = A + E”. |
phe.h2A | list(tr1 = 0.3) | list | a list of additive heritability. |
phe.h2D | list(tr1 = 0.1) | list | a list of dominant heritability. |
phe.h2GxG | NULL | list | a list of GxG interaction heritability. |
phe.h2GxE | NULL | list | a list of GxE interaction heritability. |
phe.h2PE | NULL | list | a list of permanent environmental heritability. |
phe.var | NULL | list | a list of phenotype variance. |
phe.corA | NULL | matrix | the additive genetic correlation matrix. |
phe.corD | NULL | matrix | the dominant genetic correlation matrix. |
phe.corGxG | NULL | list | a list of the GxG genetic correlation matrix. |
phe.corPE | NULL | matrix | the permanent environmental correlation matrix. |
phe.corE | NULL | matrix | the residual correlation matrix. |
annotation
, main function of Annotation
Simulation:
Paramater | Default | Options | Description |
pop.map | NULL | data.frame | the map data with annotation information. |
qtn.model | ‘A’ | character | the genetic model of QTN such as ‘A + D’. |
qtn.index | 10 | list | the QTN index for each trait. |
qtn.num | 10 | list | the QTN number for (each group in) each trait. |
qtn.dist | list(tr1 = ‘norm’) | list | the QTN distribution containing ‘norm’, ‘geom’, ‘gamma’ or ‘beta’. |
qtn.var | list(tr1 = 1) | list | the variances for normal distribution. |
qtn.prob | NULL | list | the probability of success for geometric distribution. |
qtn.shape | NULL | list | the shape parameter for gamma distribution. |
qtn.scale | NULL | list | the scale parameter for gamma distribution. |
qtn.shape1 | NULL | list | the shape1 parameter for beta distribution. |
qtn.shape2 | NULL | list | the shape2 parameter for beta distribution. |
qtn.ncp | NULL | list | the ncp parameter for beta distribution. |
qtn.spot | NULL | list | the QTN distribution probability in each block. |
len.block | 5e7 | num | the block length. |
maf | NULL | num | the maf threshold, markers less than this threshold will be exclude. |
Users can use real genotype data with specific genetic structure to generate phenotype.
# Create a genotype matrix
# pop.geno <- read.table("genotype.txt")
# pop.geno <- bigmemory::attach.big.matrix("genotype.geno.desc")
<- matrix(c(0, 1, 2, 0), nrow = 1e4, ncol = 1e2, byrow = TRUE)
pop.geno
# Generate annotation simulation parameters
<- param.annot(pop.marker = 1e4)
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.geno = pop.geno)
SP # Generate phenotype simulation parameters
<- param.pheno(SP = SP, phe.h2A = list(tr1 = 0.3))
SP
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP) SP
Users can also generate phenotype using species-specific genotype matrix.
# Generate annotation simulation parameters
<- param.annot(species = "pig")
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2)
SP # Generate phenotype simulation parameters
<- param.pheno(SP = SP, phe.h2A = list(tr1 = 0.3))
SP
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP) SP
Users can also generate phenotype using random genotype.
# Generate annotation simulation parameters
<- param.annot(pop.marker = 1e4)
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2)
SP # Generate phenotype simulation parameters
<- param.pheno(SP = SP, phe.h2A = list(tr1 = 0.3))
SP
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP) SP
SIMER
generates continuous phenotypes
by default. Continuous phenotype simulation is displayed as
follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
<- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10), qtn.model = "A") # Additive effect
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2) # random genotype
SP # Generate phenotype simulation parameters
<- param.pheno(
SP SP = SP,
phe.type = list(tr1 = "continuous"),
phe.model = list(tr1 = "T1 = A + E"), # "T1" (Trait 1) consists of Additive effect and Residual effect
# phe.var = list(tr1 = 100),
phe.h2A = list(tr1 = 0.3)
)
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP) SP
Multiple-trait simulation of continuous phenotype is displayed as
follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
<- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10, tr2 = 10), qtn.model = "A") # Additive effect
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2) # random genotype
SP # Generate phenotype simulation parameters
<- param.pheno(
SP SP = SP,
phe.type = list(tr1 = "continuous", tr2 = "continuous"),
phe.model = list(
tr1 = "T1 = A + E", # "T1" (Trait 1) consists of Additive effect and Residual effect
tr2 = "T2 = A + E" # "T2" (Trait 2) consists of Additive effect and Residual effect
),# phe.var = list(tr1 = 100, tr2 = 100),
phe.h2A = list(tr1 = 0.3, tr2 = 0.3),
phe.corA = matrix(c(1, 0.5, 0.5, 1), 2, 2) # Additive genetic correlation
)
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP) SP
SIMER
generates case-control phenotypes
by phe.type
. phe.type
consists of the variable
names and their percentages. Case-control phenotype simulation is
displayed as follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
<- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10), qtn.model = "A") # Additive effect
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2) # random genotype
SP # Generate phenotype simulation parameters
<- param.pheno(
SP SP = SP,
phe.type = list(tr1 = list(case = 0.01, control = 0.99)), # "T1" (Trait 1) consists of 1% case and 99% control
phe.model = list(tr1 = "T1 = A + E"), # "T1" (Trait 1) consists of Additive effect and Residual effect
# phe.var = list(tr1 = 100),
phe.h2A = list(tr1 = 0.3)
)
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP) SP
Multiple-trait simulation of case-control phenotype is displayed as
follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
<- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10, tr2 = 10), qtn.model = "A") # Additive effect
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2) # random genotype
SP # Generate phenotype simulation parameters
<- param.pheno(
SP SP = SP,
phe.type = list(
tr1 = list(case = 0.01, control = 0.99), # "T1" (Trait 1) consists of 1% case and 99% control
tr2 = list(case = 0.01, control = 0.99) # "T2" (Trait 2) consists of 1% case and 99% control
),phe.model = list(
tr1 = "T1 = A + E", # "T1" (Trait 1) consists of Additive effect and Residual effect
tr2 = "T2 = A + E" # "T2" (Trait 2) consists of Additive effect and Residual effect
),# phe.var = list(tr1 = 100, tr2 = 100),
phe.h2A = list(tr1 = 0.3, tr2 = 0.3),
phe.corA = matrix(c(1, 0.5, 0.5, 1), 2, 2) # Additive genetic correlation
)
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP) SP
SIMER
generates categorical phenotypes
by phe.type
. phe.type
consists of the variable
names and their percentages. Categorical phenotype simulation is
displayed as follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
<- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10), qtn.model = "A") # Additive effect
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2) # random genotype
SP # Generate phenotype simulation parameters
<- param.pheno(
SP SP = SP,
phe.type = list(tr1 = list(low = 0.3, medium = 0.4, high = 0.3)), # "T1" (Trait 1) consists of 30% low, 40% medium, and 30% high
phe.model = list(tr1 = "T1 = A + E"), # "T1" (Trait 1) consists of Additive effect and Residual effect
# phe.var = list(tr1 = 100),
phe.h2A = list(tr1 = 0.3)
)
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP) SP
Multiple-trait simulation of categorical phenotype is displayed as
follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
<- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10, tr2 = 10), qtn.model = "A") # Additive effect
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2) # random genotype
SP # Generate phenotype simulation parameters
<- param.pheno(
SP SP = SP,
phe.type = list(
tr1 = list(low = 0.3, medium = 0.4, high = 0.3), # "T1" (Trait 1) consists of 30% low, 40% medium, and 30% high
tr2 = list(low = 0.3, medium = 0.4, high = 0.3) # "T2" (Trait 2) consists of 30% low, 40% medium, and 30% high
),phe.model = list(
tr1 = "T1 = A + E", # "T1" (Trait 1) consists of Additive effect and Residual effect
tr2 = "T2 = A + E" # "T2" (Trait 2) consists of Additive effect and Residual effect
),# phe.var = list(tr1 = 100, tr2 = 100),
phe.h2A = list(tr1 = 0.3, tr2 = 0.3),
phe.corA = matrix(c(1, 0.5, 0.5, 1), 2, 2) # Additive genetic correlation
)
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP) SP
In an “A” model,
SIMER
only considers an
Additive effect as a genetic effect. Users
should prepare Additive
QTN effect in the Annotation
data to generate an Additive
Individual effect. An
Additive single-trait simulation is displayed
as follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
<- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10), qtn.model = "A") # Additive effect
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2) # random genotype
SP # Generate phenotype simulation parameters
<- param.pheno(
SP SP = SP,
phe.model = list(tr1 = "T1 = A + E"), # "T1" (Trait 1) consists of Additive effect and Residual effect
# phe.var = list(tr1 = 100),
phe.h2A = list(tr1 = 0.3)
)
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP) SP
In the multiple-trait simulation, SIMER
builds accurate Additive genetic correlation
among multiple traits. An Additive
multiple-trait simulation is displayed as follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
<- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10, tr2 = 10), qtn.model = "A") # Additive effect
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2) # random genotype
SP # Generate phenotype simulation parameters
<- param.pheno(
SP SP = SP,
phe.model = list(
tr1 = "T1 = A + E", # "T1" (Trait 1) consists of Additive effect and Residual effect
tr2 = "T2 = A + E" # "T2" (Trait 2) consists of Additive effect and Residual effect
),# phe.var = list(tr1 = 100, tr2 = 100),
phe.h2A = list(tr1 = 0.3, tr2 = 0.3),
phe.corA = matrix(c(1, 0.5, 0.5, 1), 2, 2) # Additive genetic correlation
)
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP) SP
In an “AD” model,
SIMER
considers
Additive effect and
Dominant effect as genetic effect. Users
should prepare Additive
QTN effect and
Dominant QTN effect
in the Annotation data to generate an
Additive Individual
effect and Dominant
Individual effect.
Additive and
Dominant single-trait simulation is displayed
as follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
<- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10), qtn.model = "A + D") # Additive effect and Dominant effect
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2) # random genotype
SP # Generate phenotype simulation parameters
<- param.pheno(
SP SP = SP,
phe.model = list(tr1 = "T1 = A + D + E"), # "T1" (Trait 1) consists of Additive effect, Dominant effect, and Residual effect
# phe.var = list(tr1 = 100),
phe.h2A = list(tr1 = 0.3),
phe.h2D = list(tr1 = 0.1)
)
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP) SP
In multiple-trait simulation, SIMER
builds accurate Additive genetic correlation
and accurate Dominant genetic correlation
among multiple traits. An Additive and
Dominant multiple-trait simulation is
displayed as follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
<- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10, tr2 = 10), qtn.model = "A + D") # Additive effect and Dominant effect
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2) # random genotype
SP # Generate phenotype simulation parameters
<- param.pheno(
SP SP = SP,
phe.model = list(
tr1 = "T1 = A + D + E", # "T1" (Trait 1) consists of Additive effect, Dominant effect, and Residual effect
tr2 = "T2 = A + D + E" # "T2" (Trait 2) consists of Additive effect, Dominant effect, and Residual effect
),# phe.var = list(tr1 = 100, tr2 = 100),
phe.h2A = list(tr1 = 0.3, tr2 = 0.3),
phe.h2D = list(tr1 = 0.1, tr2 = 0.1),
phe.corA = matrix(c(1, 0.5, 0.5, 1), 2, 2), # Additive genetic correlation
phe.corD = matrix(c(1, 0.5, 0.5, 1), 2, 2) # Dominant genetic correlation
)
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP) SP
In a “GxG” model,
SIMER
considers
Genetic-Genetic
effect as a genetic effect. Users should prepare
Genetic-Genetic
QTN effect in the Annotation
data to generate
Genetic-Genetic
Individual effect. An example of
Additive-Dominant
interaction in single-trait simulation is displayed as follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
<- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10), qtn.model = "A + D + A:D") # Additive effect, Dominant effect, and Additive-Dominant interaction effect
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2) # random genotype
SP # Generate phenotype simulation parameters
<- param.pheno(
SP SP = SP,
phe.model = list(tr1 = "T1 = A + D + A:D + E"), # "T1" (Trait 1) consists of Additive effect, Dominant effect, Additive-Dominant interaction effect, and Residual effect
# phe.var = list(tr1 = 100),
phe.h2A = list(tr1 = 0.3),
phe.h2D = list(tr1 = 0.1),
phe.h2GxG = list(tr1 = list("A:D" = 0.1))
)
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP) SP
In the multiple-trait simulation, SIMER
builds accurate Genetic-Genetic interaction
correlation among multiple traits. An example of
Additive-Dominant
interaction in multiple-trait simulation is displayed as follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
<- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10, tr2 = 10), qtn.model = "A + D + A:D") # Additive effect, Dominant effect, and Additive-Dominant interaction effect
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2) # random genotype
SP # Generate phenotype simulation parameters
<- param.pheno(
SP SP = SP,
phe.model = list(
tr1 = "T1 = A + D + A:D + E", # "T1" (Trait 1) consists of Additive effect, Dominant effect, Additive-Dominant interaction effect, and Residual effect
tr2 = "T2 = A + D + A:D + E" # "T2" (Trait 2) consists of Additive effect, Dominant effect, Additive-Dominant interaction effect, and Residual effect
),# phe.var = list(tr1 = 100, tr2 = 100),
phe.h2A = list(tr1 = 0.3, tr2 = 0.3),
phe.h2D = list(tr1 = 0.1, tr2 = 0.1),
phe.h2GxG = list(tr1 = list("A:D" = 0.1), tr2 = list("A:D" = 0.1)),
phe.corA = matrix(c(1, 0.5, 0.5, 1), 2, 2), # Additive genetic correlation
phe.corD = matrix(c(1, 0.5, 0.5, 1), 2, 2), # Dominant genetic correlation
phe.corGxG = list("A:D" = matrix(c(1, 0.5, 0.5, 1), 2, 2)) # Additive-Dominant interaction genetic correlation
)
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP) SP
In the Repeated Record model,
SIMER
adds a PE
(Permanent
Environmental) effect to the phenotype. The
number of repeated records can be set by pop.rep
. In the
meantime, pop.rep.bal
can be used to determine whether
repeated records are balanced. The Repeated
Record in a single-trait simulation is displayed as
follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
<- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10), qtn.model = "A") # Additive effect
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2) # random genotype
SP # Generate phenotype simulation parameters
<- param.pheno(
SP SP = SP,
pop.rep = 2, # The number of repeated records is 2
pop.rep.bal = TRUE, # Repeated records are balanced
phe.model = list(tr1 = "T1 = A + E"), # "T1" (Trait 1) consists of Additive effect and Residual effect
# phe.var = list(tr1 = 100),
phe.h2A = list(tr1 = 0.3)
)
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP) SP
In the multiple-trait simulation, SIMER
builds accurate Permanent Environmental
correlation among multiple traits. Repeated
Record in multiple-trait simulation is displayed as
follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
<- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10, tr2 = 10), qtn.model = "A") # Additive effect
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2) # random genotype
SP # Generate phenotype simulation parameters
<- param.pheno(
SP SP = SP,
pop.rep = 2, # The number of repeated records is 2
pop.rep.bal = TRUE, # Repeated records are balanced
phe.model = list(
tr1 = "T1 = A + E", # "T1" (Trait 1) consists of Additive effect and Residual effect
tr2 = "T2 = A + E" # "T2" (Trait 2) consists of Additive effect and Residual effect
),# phe.var = list(tr1 = 100, tr2 = 100),
phe.h2A = list(tr1 = 0.3, tr2 = 0.3),
phe.corA = matrix(c(1, 0.5, 0.5, 1), 2, 2), # Additive genetic correlation
phe.corPE = matrix(c(1, 0.5, 0.5, 1), 2, 2) # Permanent Environmental correlation
)
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP) SP
Normal distribution is the most common QTN
effect distribution. Phenotype controlled by QTNs subject to
Normal distribution in single-trait simulation
is displayed as follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
<- param.annot(
SP pop.marker = 1e4,
qtn.num = list(tr1 = 10),
qtn.model = "A",
qtn.dist = list(tr1 = "norm"),
qtn.var = list(tr1 = 1)
)# Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2) # random genotype
SP # Generate phenotype simulation parameters
<- param.pheno(
SP SP = SP,
phe.model = list(tr1 = "T1 = A + E"), # "T1" (Trait 1) consists of Additive effect and Residual effect
# phe.var = list(tr1 = 100),
phe.h2A = list(tr1 = 0.3)
)
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP) SP
Phenotype controlled by QTNs subject to
Normal distribution in multiple-trait
simulation is displayed as follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
<- param.annot(
SP pop.marker = 1e4,
qtn.num = list(tr1 = 10, tr2 = 10),
qtn.model = "A",
qtn.dist = list(tr1 = "norm", tr2 = "norm"),
qtn.var = list(tr1 = 1, tr2 = 1)
)# Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2) # random genotype
SP # Generate phenotype simulation parameters
<- param.pheno(
SP SP = SP,
phe.model = list(
tr1 = "T1 = A + E", # "T1" (Trait 1) consists of Additive effect and Residual effect
tr2 = "T2 = A + E" # "T2" (Trait 2) consists of Additive effect and Residual effect
),# phe.var = list(tr1 = 100, tr2 = 100),
phe.h2A = list(tr1 = 0.3, tr2 = 0.3),
phe.corA = matrix(c(1, 0.5, 0.5, 1), 2, 2) # Additive genetic correlation
)
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP) SP
Geometric distribution is the probability
of success for the first time obtained only after K trials among the N
Bernoulli trials. Geometric distribution can
be used as a QTN effect distribution. Phenotype controlled by QTNs
subject to Geometric distribution in
single-trait simulation is displayed as follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
<- param.annot(
SP pop.marker = 1e4,
qtn.num = list(tr1 = 10),
qtn.model = "A",
qtn.dist = list(tr1 = "geom"),
qtn.prob = list(tr1 = 0.5)
)# Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2) # random genotype
SP # Generate phenotype simulation parameters
<- param.pheno(
SP SP = SP,
phe.model = list(tr1 = "T1 = A + E"), # "T1" (Trait 1) consists of Additive effect and Residual effect
# phe.var = list(tr1 = 100),
phe.h2A = list(tr1 = 0.3)
)
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP) SP
Phenotype controlled by QTNs subject to
Geometric distribution in multiple-trait
simulation is displayed as follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
<- param.annot(
SP pop.marker = 1e4,
qtn.num = list(tr1 = 10, tr2 = 10),
qtn.model = "A",
qtn.dist = list(tr1 = "geom", tr2 = "geom"),
qtn.prob = list(tr1 = 0.5, tr2 = 0.5)
)# Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2) # random genotype
SP # Generate phenotype simulation parameters
<- param.pheno(
SP SP = SP,
phe.model = list(
tr1 = "T1 = A + E", # "T1" (Trait 1) consists of Additive effect and Residual effect
tr2 = "T2 = A + E" # "T2" (Trait 2) consists of Additive effect and Residual effect
),# phe.var = list(tr1 = 100, tr2 = 100),
phe.h2A = list(tr1 = 0.3, tr2 = 0.3),
phe.corA = matrix(c(1, 0.5, 0.5, 1), 2, 2) # Additive genetic correlation
)
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP) SP
Gamma distribution is the sum of N
independent exponential random variables. Note that
Exponential distribution is a special form of
Gamma distribution when
qtn.shape = 1
and qtn.scale = 1
. Phenotype
controlled by QTNs subject to Gamma
distribution in single-trait simulation is displayed as follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
<- param.annot(
SP pop.marker = 1e4,
qtn.num = list(tr1 = 10),
qtn.model = "A",
qtn.dist = list(tr1 = "gamma"),
qtn.shape = list(tr1 = 1),
qtn.scale = list(tr1 = 1)
)# Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2) # random genotype
SP # Generate phenotype simulation parameters
<- param.pheno(
SP SP = SP,
phe.model = list(tr1 = "T1 = A + E"), # "T1" (Trait 1) consists of Additive effect and Residual effect
# phe.var = list(tr1 = 100),
phe.h2A = list(tr1 = 0.3)
)
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP) SP
Phenotype controlled by QTNs subject to
Gamma distribution in multiple-trait
simulation is displayed as follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
<- param.annot(
SP pop.marker = 1e4,
qtn.num = list(tr1 = 10, tr2 = 10),
qtn.model = "A",
qtn.dist = list(tr1 = "gamma", tr2 = "gamma"),
qtn.shape = list(tr1 = 1, tr2 = 1),
qtn.scale = list(tr1 = 1, tr2 = 1)
)# Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2) # random genotype
SP # Generate phenotype simulation parameters
<- param.pheno(
SP SP = SP,
phe.model = list(
tr1 = "T1 = A + E", # "T1" (Trait 1) consists of Additive effect and Residual effect
tr2 = "T2 = A + E" # "T2" (Trait 2) consists of Additive effect and Residual effect
),# phe.var = list(tr1 = 100, tr2 = 100),
phe.h2A = list(tr1 = 0.3, tr2 = 0.3),
phe.corA = matrix(c(1, 0.5, 0.5, 1), 2, 2) # Additive genetic correlation
)
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP) SP
Beta distribution is a density function of
conjugate prior distribution as Bernoulli distribution and Binomial
distribution. Phenotype controlled by QTNs subject to the
Beta distribution in single-trait simulation
is displayed as follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
<- param.annot(
SP pop.marker = 1e4,
qtn.num = list(tr1 = 10),
qtn.model = "A",
qtn.dist = list(tr1 = "beta"),
qtn.shape1 = list(tr1 = 1),
qtn.shape2 = list(tr1 = 1),
qtn.ncp = list(tr1 = 0)
)# Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2) # random genotype
SP # Generate phenotype simulation parameters
<- param.pheno(
SP SP = SP,
phe.model = list(tr1 = "T1 = A + E"), # "T1" (Trait 1) consists of Additive effect and Residual effect
# phe.var = list(tr1 = 100),
phe.h2A = list(tr1 = 0.3)
)
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP) SP
Phenotype controlled by QTNs subject to
Beta distribution in multiple-trait simulation
is displayed as follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
<- param.annot(
SP pop.marker = 1e4,
qtn.num = list(tr1 = 10, tr2 = 10),
qtn.model = "A",
qtn.dist = list(tr1 = "beta", tr2 = "beta"),
qtn.shape1 = list(tr1 = 1, tr2 = 1),
qtn.shape2 = list(tr1 = 1, tr2 = 1),
qtn.ncp = list(tr1 = 0, tr2 = 0)
)# Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2) # random genotype
SP # Generate phenotype simulation parameters
<- param.pheno(
SP SP = SP,
phe.model = list(
tr1 = "T1 = A + E", # "T1" (Trait 1) consists of Additive effect and Residual effect
tr2 = "T2 = A + E" # "T2" (Trait 2) consists of Additive effect and Residual effect
),# phe.var = list(tr1 = 100, tr2 = 100),
phe.h2A = list(tr1 = 0.3, tr2 = 0.3),
phe.corA = matrix(c(1, 0.5, 0.5, 1), 2, 2) # Additive genetic correlation
)
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP) SP
SIMER
supports adding
Fixed effects,
Covariates, and
Environmental Random
effects to a phenotype. Users should prepare a list of environmental
factors setting. Fixed effects,
Covariates , and
Environmental Random
effects are determined by effect
, slope
, and
ratio
respectively. A phenotype with
Fixed effect,
Covariate, and
Environmental Random
effect in single-trait simulation is displayed as follows:
If users want to output files, please see File output.
# Prepare environmental factor list
<- list(
pop.env F1 = list( # fixed effect 1
level = c("1", "2"),
effect = list(tr1 = c(50, 30))
), F2 = list( # fixed effect 2
level = c("d1", "d2", "d3"),
effect = list(tr1 = c(10, 20, 30))
),C1 = list( # covariate 1
level = c(70, 80, 90),
slope = list(tr1 = 1.5)
),R1 = list( # random effect 1
level = c("l1", "l2", "l3"),
ratio = list(tr1 = 0.1)
)
)
# Generate genotype simulation parameters
<- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10), qtn.model = "A")
SP # Generate annotation simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2) # random genotype
SP # Generate phenotype simulation parameters
<- param.pheno(
SP SP = SP,
pop.env = pop.env,
phe.model = list(tr1 = "T1 = A + F1 + F2 + C1 + R1 + E"), # "T1" (Trait 1) consists of Additive effect, F1, F2, C1, R1, and Residual effect
# phe.var = list(tr1 = 100),
phe.h2A = list(tr1 = 0.3)
)
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP) SP
A phenotype with Fixed effect,
Covariate, and
Environmental Random
effect in multiple-trait simulation is displayed as follows:
If users want to output files, please see File output.
# Prepare environmental factor list
<- list(
pop.env F1 = list( # fixed effect 1
level = c("1", "2"),
effect = list(tr1 = c(50, 30), tr2 = c(50, 30))
), F2 = list( # fixed effect 2
level = c("d1", "d2", "d3"),
effect = list(tr1 = c(10, 20, 30), tr2 = c(10, 20, 30))
),C1 = list( # covariate 1
level = c(70, 80, 90),
slope = list(tr1 = 1.5, tr2 = 1.5)
),R1 = list( # random effect 1
level = c("l1", "l2", "l3"),
ratio = list(tr1 = 0.1, tr2 = 0.1)
)
)
# Generate genotype simulation parameters
<- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10, tr2 = 10), qtn.model = "A")
SP # Generate annotation simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2) # random genotype
SP # Generate phenotype simulation parameters
<- param.pheno(
SP SP = SP,
pop.env = pop.env,
phe.model = list(
tr1 = "T1 = A + F1 + F2 + C1 + R1 + E", # "T1" (Trait 1) consists of Additive effect, F1, F2, C1, R1, and Residual effect
tr2 = "T2 = A + F1 + F2 + C1 + R1 + E" # "T2" (Trait 1) consists of Additive effect, F1, F2, C1, R1, and Residual effect
),# phe.var = list(tr1 = 100, tr2 = 100),
phe.h2A = list(tr1 = 0.3, tr2 = 0.3),
phe.corA = matrix(c(1, 0.5, 0.5, 1), 2, 2) # Additive genetic correlation
)
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP) SP
In a “GxE” model,
SIMER
adds a
Genetic-Environmental
interaction effect to the phenotype. Users should prepare the
Genetic QTN effect
in the Annotation data and environmental
factor by pop.env
to generate a
Genetic-Environmental
Individual effect. An example of a
Genetic-Environmental
interaction in a single-trait simulation is displayed as follows:
If users want to output files, please see File output.
# Prepare environmental factor list
<- list(
pop.env F1 = list( # fixed effect 1
level = c("1", "2"),
effect = list(tr1 = c(50, 30))
), F2 = list( # fixed effect 2
level = c("d1", "d2", "d3"),
effect = list(tr1 = c(10, 20, 30))
),C1 = list( # covariate 1
level = c(70, 80, 90),
slope = list(tr1 = 1.5)
),R1 = list( # random effect 1
level = c("l1", "l2", "l3"),
ratio = list(tr1 = 0.1)
)
)
# Generate annotation simulation parameters
<- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10), qtn.model = "A") # Additive effect
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2) # random genotype
SP # Generate phenotype simulation parameters
<- param.pheno(
SP SP = SP,
pop.env = pop.env,
phe.model = list(
tr1 = "T1 = A + F1 + F2 + C1 + R1 + A:F1 + E" # "T1" (Trait 1) consists of Additive effect, F1, F2, C1, R1, Additive-F1 interaction effect, and Residual effect
),# phe.var = list(tr1 = 100),
phe.h2A = list(tr1 = 0.3),
phe.h2GxE = list(tr1 = list("A:F1" = 0.1))
)
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP) SP
An example of
Genetic-Environmental
interaction in multiple-trait simulation is displayed as follows:
If users want to output files, please see File output.
# Prepare environmental factor list
<- list(
pop.env F1 = list( # fixed effect 1
level = c("1", "2"),
effect = list(tr1 = c(50, 30), tr2 = c(50, 30))
), F2 = list( # fixed effect 2
level = c("d1", "d2", "d3"),
effect = list(tr1 = c(10, 20, 30), tr2 = c(10, 20, 30))
),C1 = list( # covariate 1
level = c(70, 80, 90),
slope = list(tr1 = 1.5, tr2 = 1.5)
),R1 = list( # random effect 1
level = c("l1", "l2", "l3"),
ratio = list(tr1 = 0.1, tr2 = 0.1)
)
)
# Generate annotation simulation parameters
<- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10, tr2 = 10), qtn.model = "A") # Additive effect
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2) # random genotype
SP # Generate phenotype simulation parameters
<- param.pheno(
SP SP = SP,
pop.env = pop.env,
phe.model = list(
tr1 = "T1 = A + F1 + F2 + C1 + R1 + A:F1 + E", # "T1" (Trait 1) consists of Additive effect, F1, F2, C1, R1, Additive-F1 interaction effect, and Residual effect
tr2 = "T2 = A + F1 + F2 + C1 + R1 + A:F1 + E" # "T2" (Trait 2) consists of Additive effect, F1, F2, C1, R1, Additive-F1 interaction effect, and Residual effect
),# phe.var = list(tr1 = 100, tr2 = 100),
phe.h2A = list(tr1 = 0.3, tr2 = 0.3),
phe.h2GxE = list(tr1 = list("A:F1" = 0.1), tr2 = list("A:F1" = 0.1)),
phe.corA = matrix(c(1, 0.5, 0.5, 1), 2, 2) # Additive genetic correlation
)
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP) SP
In an “ExE” model,
SIMER
adds
Environmental-Environmental
interaction effect to phenotype. Users should prepare environmental
factor by pop.env
for generating
Environmental-Environmental
Individual effect. An example of
Environmental-Environmental
interaction in single-trait simulation is displayed as follows:
If users want to output files, please see File output.
# Prepare environmental factor list
<- list(
pop.env F1 = list( # fixed effect 1
level = c("1", "2"),
effect = list(tr1 = c(50, 30))
), F2 = list( # fixed effect 2
level = c("d1", "d2", "d3"),
effect = list(tr1 = c(10, 20, 30))
),C1 = list( # covariate 1
level = c(70, 80, 90),
slope = list(tr1 = 1.5)
),R1 = list( # random effect 1
level = c("l1", "l2", "l3"),
ratio = list(tr1 = 0.1)
)
)
# Generate annotation simulation parameters
<- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10), qtn.model = "A") # Additive effect
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2) # random genotype
SP # Generate phenotype simulation parameters
<- param.pheno(
SP SP = SP,
pop.env = pop.env,
phe.model = list(
tr1 = "T1 = A + F1 + F2 + C1 + R1 + F1:R1 + E" # "T1" (Trait 1) consists of Additive effect, F1, F2, C1, R1, F1-R1 interaction effect, and Residual effect
),# phe.var = list(tr1 = 100),
phe.h2A = list(tr1 = 0.3),
phe.h2GxE = list(tr1 = list("F1:R1" = 0.1))
)
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP) SP
An example of
Environmental-Environmental
interaction in multiple-trait simulation is displayed as follows:
If users want to output files, please see File output.
# Prepare environmental factor list
<- list(
pop.env F1 = list( # fixed effect 1
level = c("1", "2"),
effect = list(tr1 = c(50, 30), tr2 = c(50, 30))
), F2 = list( # fixed effect 2
level = c("d1", "d2", "d3"),
effect = list(tr1 = c(10, 20, 30), tr2 = c(10, 20, 30))
),C1 = list( # covariate 1
level = c(70, 80, 90),
slope = list(tr1 = 1.5, tr2 = 1.5)
),R1 = list( # random effect 1
level = c("l1", "l2", "l3"),
ratio = list(tr1 = 0.1, tr2 = 0.1)
)
)
# Generate annotation simulation parameters
<- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10, tr2 = 10), qtn.model = "A") # Additive effect
SP # Generate genotype simulation parameters
# SP <- param.geno(SP = SP, pop.geno = pop.geno) # external genotype
<- param.geno(SP = SP, pop.ind = 1e2) # random genotype
SP # Generate phenotype simulation parameters
<- param.pheno(
SP SP = SP,
pop.env = pop.env,
phe.model = list(
tr1 = "T1 = A + F1 + F2 + C1 + R1 + F1:R1 + E", # "T1" (Trait 1) consists of Additive effect, F1, F2, C1, R1, F1:R1 interaction effect, and Residual effect
tr2 = "T2 = A + F1 + F2 + C1 + R1 + F1:R1 + E" # "T2" (Trait 2) consists of Additive effect, F1, F2, C1, R1, F1:R1 interaction effect, and Residual effect
),# phe.var = list(tr1 = 100, tr2 = 100),
phe.h2A = list(tr1 = 0.3, tr2 = 0.3),
phe.h2GxE = list(tr1 = list("F1:R1" = 0.1), tr2 = list("F1:R1" = 0.1)),
phe.corA = matrix(c(1, 0.5, 0.5, 1), 2, 2) # Additive genetic correlation
)
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP) SP
In the single-trait simulation, the trait can be controlled by
varied QTN effect distribution. An example of
the single-trait controlled by two-group QTNs is displayed as
follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
<- param.annot(
SP pop.marker = 1e4,
qtn.num = list(tr1 = c(2, 8)), # Group1: 2 QTNs; Group 2: 8 QTNs
qtn.dist = list(tr1 = c("norm", "norm")),
qtn.var = list(tr1 = c(1, 1)), # Group1: genetic variance of QTNs = 1; Group2: genetic variance of QTNs = 1
qtn.model = "A"
)# Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2) # random genotype
SP # Generate phenotype simulation parameters
<- param.pheno(
SP SP = SP,
phe.model = list(tr1 = "T1 = A + E"), # "T1" (Trait 1) consists of Additive effect and Residual effect
# phe.var = list(tr1 = 100),
phe.h2A = list(tr1 = 0.3)
)
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP) SP
SIMER
imitates the reproductive process
of organisms to generate a Multiple-Generation
population. The genotype data and
phenotype data of the population are screened
by single-trait selection or
multiple-trait selection, and then those data
are amplified by species-specific
reproduction.
selects
, main function of
Selection:
Paramater | Default | Options | Description |
pop.sel | NULL | list | the selected males and females. |
ps | c(0.8, 0.8) | num vector | if ps <= 1, fraction selected in selection of males and females; if ps > 1, ps is number of selected males and females. |
decr | TRUE | TRUE or FALSE | whether the sort order is decreasing. |
sel.crit | ‘pheno’ | character | the selection criteria, it can be ‘TBV’, ‘TGV’, and ‘pheno’. |
sel.single | ‘comb’ | character | the single-trait selection method, it can be ‘ind’, ‘fam’, ‘infam’, and ‘comb’. |
sel.multi | ‘index’ | character | the multiple-trait selection method, it can be ‘index’, ‘indcul’, and ‘tmd’. |
index.wt | c(0.5, 0.5) | num vector | the weight of each trait for multiple-trait selection. |
index.tdm | 1 | num | the index of tandem selection for multiple-trait selection. |
goal.perc | 0.1 | num | the percentage of goal more than the mean of scores of individuals. |
pass.perc | 0.9 | num | the percentage of expected excellent individuals. |
reproduces
, main function of
Reproduction:
Paramater | Default | Options | Description |
pop.gen | 2 | num | the generations of simulated population. |
reprod.way | ‘randmate’ | character | reproduction method, it consists of ‘clone’, ‘dh’, ‘selfpol’, ‘randmate’, ‘randexself’, ‘assort’, ‘disassort’, ‘2waycro’, ‘3waycro’, ‘4waycro’, ‘backcro’, and ‘userped’. |
sex.rate | 0.5 | num | the male rate in the population. |
prog | 2 | num | the progeny number of an individual. |
Individual selection is a selection method
based on the phenotype of individual traits,
which is also known as mixed selection or collective selection. This
selection method is simple and easy to use for traits with
high heritability.
If users want to output files, please see File output.
# Generate annotation simulation parameters
<- param.annot(pop.marker = 1e4)
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2)
SP # Generate phenotype simulation parameters
<- param.pheno(SP = SP, phe.h2A = list(tr1 = 0.3))
SP # Generate selection parameters
<- param.sel(SP = SP, sel.single = "ind")
SP
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP)
SP # Run selection
<- selects(SP) SP
Family selection is a selection method by
family based on the average of the family.
This selection method is used for traits with low
heritability.
If users want to output files, please see File output.
# Generate annotation simulation parameters
<- param.annot(pop.marker = 1e4)
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2)
SP # Generate phenotype simulation parameters
<- param.pheno(SP = SP, phe.h2A = list(tr1 = 0.3))
SP # Generate selection parameters
<- param.sel(SP = SP, sel.single = "fam")
SP
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP)
SP # Run selection
<- selects(SP) SP
Within-family selection is a selection
method based on the deviation of individual phenotype and
family mean value in each family. This selection method is
used for traits with low heritability and small
families.
If users want to output files, please see File output.
# Generate annotation simulation parameters
<- param.annot(pop.marker = 1e4)
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2)
SP # Generate phenotype simulation parameters
<- param.pheno(SP = SP, phe.h2A = list(tr1 = 0.3))
SP # Generate selection parameters
<- param.sel(SP = SP, sel.single = "infam")
SP
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP)
SP # Run selection
<- selects(SP) SP
Combined selection is a selection method
based on weighed combination of the deviation of individual
phenotype and family mean value.
If users want to output files, please see File output.
# Generate annotation simulation parameters
<- param.annot(pop.marker = 1e4)
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2)
SP # Generate phenotype simulation parameters
<- param.pheno(SP = SP, phe.h2A = list(tr1 = 0.3))
SP # Generate selection parameters
<- param.sel(SP = SP, sel.single = "comb")
SP
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP)
SP # Run selection
<- selects(SP) SP
Tandem selection is a method for
sequentially selecting a plurality of target traits one by
one. The index of the selected trait is
index.tdm
and this parameter should not be
controlled by Users.
If users want to output files, please see File output.
# Generate genotype simulation parameters
<- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10, tr2 = 10))
SP # Generate annotation simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2)
SP # Generate phenotype simulation parameters
<- param.pheno(
SP SP = SP,
# phe.var = list(tr1 = 100, tr2 = 100),
phe.model = list(
tr1 = "T1 = A + E",
tr2 = "T2 = A + E"
)
)# Generate selection parameters
<- param.sel(SP = SP, sel.multi = "tdm")
SP
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP)
SP # Run selection
<- selects(SP) SP
Set a minimum selection criterion for each
target trait. Then a Independent culling
selection will eliminate this
individual when the candidate’s performance on any trait is
lower than the corresponding criteria.
If users want to output files, please see File output.
# Generate genotype simulation parameters
<- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10, tr2 = 10))
SP # Generate annotation simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2)
SP # Generate phenotype simulation parameters
<- param.pheno(
SP SP = SP,
# phe.var = list(tr1 = 100, tr2 = 100),
phe.model = list(
tr1 = "T1 = A + E",
tr2 = "T2 = A + E"
)
)# Generate selection parameters
<- param.sel(SP = SP, sel.multi = "indcul")
SP
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP)
SP # Run selection
<- selects(SP) SP
Index selection is a comprehensive
selection that will consider several traits based on their respective
heritabilities, phenotypic
variances, economic weights,
corresponding genetic correlations, and
phenotypes. Then,
SIMER
calculates the index
value of each trait, eliminates it, or selects it
according to its level. Users can set the weight of each trait at
index.wt
.
If users want to output files, please see File output.
# Generate genotype simulation parameters
<- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10, tr2 = 10))
SP # Generate annotation simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2)
SP # Generate phenotype simulation parameters
<- param.pheno(
SP SP = SP,
# phe.var = list(tr1 = 100, tr2 = 100),
phe.model = list(
tr1 = "T1 = A + E",
tr2 = "T2 = A + E"
)
)# Generate selection parameters
<- param.sel(SP = SP, sel.multi = "index")
SP
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP)
SP # Run selection
<- selects(SP) SP
Clone is a sexual reproduction method that
does not involve germ cells and does not require a process of
fertilization, but directly forms a new individual’s reproductive mode
from a part of the mother. Sex of offspring
will be 0 in the clone
.
If users want to output files, please see File output.
# Generate annotation simulation parameters
<- param.annot(pop.marker = 1e4)
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2)
SP # Generate phenotype simulation parameters
<- param.pheno(SP = SP, phe.h2A = list(tr1 = 0.3))
SP # Generate selection parameters
<- param.sel(SP = SP, sel.single = "ind")
SP # Generate reproduction parameters
<- param.reprod(SP = SP, reprod.way = "clone")
SP
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP)
SP # Run selection
<- selects(SP)
SP # Run reproduction
<- reproduces(SP) SP
Doubled haploid is a reproduction method
for breeding workers to obtain haploid plants. It induces a doubling of
the number of chromosomes and restores the number of chromosomes in
normal plants. Sex of offspring will be
0 in dh
.
If users want to output files, please see File output.
# Generate annotation simulation parameters
<- param.annot(pop.marker = 1e4)
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2)
SP # Generate phenotype simulation parameters
<- param.pheno(SP = SP, phe.h2A = list(tr1 = 0.3))
SP # Generate selection parameters
<- param.sel(SP = SP, sel.single = "ind")
SP # Generate reproduction parameters
<- param.reprod(SP = SP, reprod.way = "dh")
SP
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP)
SP # Run selection
<- selects(SP)
SP # Run reproduction
<- reproduces(SP) SP
Self-pollination refers to the combination
of male and female gametes from the same individual or between
individuals from the same clonal breeding line.
Sex of offspring will be
0 in selfpol
.
If users want to output files, please see File output.
# Generate annotation simulation parameters
<- param.annot(pop.marker = 1e4)
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2)
SP # Generate phenotype simulation parameters
<- param.pheno(SP = SP, phe.h2A = list(tr1 = 0.3))
SP # Generate selection parameters
<- param.sel(SP = SP, sel.single = "ind")
SP # Generate reproduction parameters
<- param.reprod(SP = SP, reprod.way = "selfpol")
SP
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP)
SP # Run selection
<- selects(SP)
SP # Run reproduction
<- reproduces(SP) SP
In random mating, any female or male
individual has the same probability to mate with any member of opposite
sex in a sexually reproducing organism. Sex of
offspring in random mating is controlled by sex.ratio
in
randmate
.
If users want to output files, please see File output.
# Generate annotation simulation parameters
<- param.annot(pop.marker = 1e4)
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2)
SP # Generate phenotype simulation parameters
<- param.pheno(SP = SP, phe.h2A = list(tr1 = 0.3))
SP # Generate selection parameters
<- param.sel(SP = SP, sel.single = "ind")
SP # Generate reproduction parameters
<- param.reprod(SP = SP, reprod.way = "randmate")
SP
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP)
SP # Run selection
<- selects(SP)
SP # Run reproduction
<- reproduces(SP) SP
In random mating excluding
self-pollination, an individual cannot mate with itself.
Sex of offspring in random mating is
controlled by sex.ratio
in randexself
.
If users want to output files, please see File output.
# Generate annotation simulation parameters
<- param.annot(pop.marker = 1e4)
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2)
SP # Generate phenotype simulation parameters
<- param.pheno(SP = SP, phe.h2A = list(tr1 = 0.3))
SP # Generate selection parameters
<- param.sel(SP = SP, sel.single = "ind")
SP # Generate reproduction parameters
<- param.reprod(SP = SP, reprod.way = "randexself")
SP
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP)
SP # Run selection
<- selects(SP)
SP # Run reproduction
<- reproduces(SP) SP
In assortative mating, mated pairs are of
the same phenotype more often than would occur by chance.
Sex of offspring in assortative mating is
controlled by sex.ratio
in assort
.
If users want to output files, please see File output.
# Generate annotation simulation parameters
<- param.annot(pop.marker = 1e4)
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2)
SP # Generate phenotype simulation parameters
<- param.pheno(SP = SP, phe.h2A = list(tr1 = 0.3))
SP # Generate selection parameters
<- param.sel(SP = SP, sel.single = "ind")
SP # Generate reproduction parameters
<- param.reprod(SP = SP, reprod.way = "assort")
SP
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP)
SP # Run selection
<- selects(SP)
SP # Run reproduction
<- reproduces(SP) SP
In disassortative mating, mated pairs are
of the same phenotype less often than would occur by chance.
Sex of offspring in disassortative mating is
controlled by sex.ratio
in disassort
.
If users want to output files, please see File output.
# Generate annotation simulation parameters
<- param.annot(pop.marker = 1e4)
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2)
SP # Generate phenotype simulation parameters
<- param.pheno(SP = SP, phe.h2A = list(tr1 = 0.3))
SP # Generate selection parameters
<- param.sel(SP = SP, sel.single = "ind")
SP # Generate reproduction parameters
<- param.reprod(SP = SP, reprod.way = "disassort")
SP
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP)
SP # Run selection
<- selects(SP)
SP # Run reproduction
<- reproduces(SP) SP
The Two-way cross method needs to use
sex to distinguish
two different breeds, in which the
first breed is sire
and the second breed is
dam.
If users want to output files, please see File output.
# Generate annotation simulation parameters
<- param.annot(pop.marker = 1e4)
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2)
SP # Generate phenotype simulation parameters
<- param.pheno(SP = SP, phe.h2A = list(tr1 = 0.3))
SP # Generate selection parameters
<- param.sel(SP = SP, sel.single = "ind")
SP # Generate reproduction parameters
<- param.reprod(SP = SP, reprod.way = "2waycro")
SP
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP)
SP # Two different breeds are cut by sex
$pheno$pop$gen1$sex <- rep(c(1, 2), c(50, 50))
SP# Run selection
<- selects(SP)
SP # Run reproduction
<- reproduces(SP) SP
The Three-way cross method needs to use
sex to distinguish
three different breeds, in which the
first breed is sire
and the second breed is
dam in the first two-way
cross, and the third breed is
terminal sire.
If users want to output files, please see File output.
# Generate annotation simulation parameters
<- param.annot(pop.marker = 1e4)
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2)
SP # Generate phenotype simulation parameters
<- param.pheno(SP = SP, phe.h2A = list(tr1 = 0.3))
SP # Generate selection parameters
<- param.sel(SP = SP, sel.single = "ind")
SP # Generate reproduction parameters
<- param.reprod(SP = SP, reprod.way = "3waycro")
SP
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP)
SP # Three different breeds are cut by sex
$pheno$pop$gen1$sex <- rep(c(1, 2, 1), c(30, 30, 40))
SP# Run selection
<- selects(SP)
SP # Run reproduction
<- reproduces(SP) SP
The Four-way cross method needs to use
sex to distinguish
four different breeds, in which the
first breed is sire
and the second breed is
dam in the first two-way
cross, the third breed is
sire and the fourth
breed is dam in the
second two-way cross.
If users want to output files, please see File output.
# Generate annotation simulation parameters
<- param.annot(pop.marker = 1e4)
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2)
SP # Generate phenotype simulation parameters
<- param.pheno(SP = SP, phe.h2A = list(tr1 = 0.3))
SP # Generate selection parameters
<- param.sel(SP = SP, sel.single = "ind")
SP # Generate reproduction parameters
<- param.reprod(SP = SP, reprod.way = "4waycro")
SP
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP)
SP # Three different breeds are cut by sex
$pheno$pop$gen1$sex <- rep(c(1, 2, 1, 2), c(25, 25, 25, 25))
SP# Run selection
<- selects(SP)
SP # Run reproduction
<- reproduces(SP) SP
The Back cross method needs to use
sex to distinguish
two different breeds, in which the
first breed is always
sire in each generation and the
second breed is dam
in the first two-way cross.
If users want to output files, please see File output.
# Generate annotation simulation parameters
<- param.annot(pop.marker = 1e4)
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2)
SP # Generate phenotype simulation parameters
<- param.pheno(SP = SP, phe.h2A = list(tr1 = 0.3))
SP # Generate selection parameters
<- param.sel(SP = SP, sel.single = "ind")
SP # Generate reproduction parameters
<- param.reprod(SP = SP, reprod.way = "backcro")
SP
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP)
SP # Two different breeds are cut by sex
$pheno$pop$gen1$sex <- rep(c(1, 2), c(50, 50))
SP# Run selection
<- selects(SP)
SP # Run reproduction
<- reproduces(SP) SP
User-designed pedigree mating needs a
specific user-designed pedigree to control the
mating process. The first column is sample id,
the second column is paternal id, and the
third column is maternal id. Please make sure
that paternal id and maternal
id can match the genotype data.
If users want to output files, please see File output.
# Generate annotation simulation parameters
<- param.annot(pop.marker = 1e4)
SP # Generate genotype simulation parameters
<- param.geno(SP = SP, pop.ind = 1e2)
SP # Generate phenotype simulation parameters
<- param.pheno(SP = SP, phe.h2A = list(tr1 = 0.3))
SP # Generate reproduction parameters
<- param.reprod(SP = SP, reprod.way = "userped")
SP
# Run annotation simulation
<- annotation(SP)
SP # Run genotype simulation
<- genotype(SP)
SP # Run phenotype simulation
<- phenotype(SP)
SP # Run reproduction
<- reproduces(SP) SP
The above methods are to generate populations step by
step, which are easy to
understand. Actually, SIMER
can generate a population directly in a MORE
CONVENIENT way.
If users want to output files, please see File output.
# Generate all simulation parameters
<- param.simer(qtn.num = list(tr1 = 10), pop.marker = 1e4, pop.ind = 1e2, sel.single = "comb", reprod.way = "randmate")
SP
# Run Simer
<- simer(SP) SP
After generating a population, further work can be done. Breeders
wish to evaluate their Breeding Program
Design. To save money and time,
SIMER
can assist breeders to evaluate
their Breeding Program Design by
simulation.
simer.Data.Json
, main function of Breeding
Program Design:
Paramater | Default | Options | Description |
jsonFile | NULL | character | the path of JSON file. |
hiblupPath | ’’ | character | the path of HIBLUP software. |
out | ‘simer.qc’ | character | the prefix of output files. |
dataQC | TRUE | TRUE or FALSE | whether to make data quality control. |
buildModel | TRUE | TRUR or FALSE | whether to build EBV model. |
buildIndex | TRUE | TRUR or FALSE | whether to build Selection Index. |
ncpus | 10 | num | the number of threads used, if NULL, (logical core number - 1) is automatically used. |
verbose | TRUE | TRUE or FALSE | whether to print detail. |
Breeding program design should be stored on
a JSON file. >
plan1.json
>> genotype: the absolute path or
relative path to JSON file of genotype data
>> pedigree: the filename with absolute
path or relative path to JSON file of pedigree data
>> selection_index: the economic weight
of phenotype for each trait
>> threads: the threads number used in
multiple threads computation
>> genetic_progress: the genetic
progress of a breeding plan
>> breeding_value_index: the economic
weight of breeding value for each trait
>> auto_optimization: optimizing EBV
estimated model and selection index automatically
>> quality_control_plan: the quality
control plan for genotype, pedigree, and phenotype
genotype_quality_control: the quality control plan for genotype
> filter: the ‘filter’ (individual) condition for genotyped individual
> filter_geno: the genotype missing rate filter
> filter_mind the sample missing rate filter
> filter_maf the Minor Allele Frequency filter
> filter_hwe the Hardy-Weinberg Equilibrium filter
pedigree_quality_control: the quality control plan for pedigree
> standard_ID: whether ID is standard 15-digit ID
> candidate_sire_file: the filename of candidate sire
> candidate_dam_file: the filename of candidate dam
> exclude_threshold: if the number of base error is more than this threshold, this individual will be excluded
> assign_threshold: if the number of base error is less than this threshold, this parent will be assigned to this individual
phenotype_quality_control: the quality control plan for phenotype
> job_name: the name of phenotype quality control job
> sample_info: the filename with absolute path or relative path to JSON file of phenotype data
> repeated_records: whether phenotype data contains repeated records
> multi_trait: whether phenotype data contains multiple traits
> filter: the ‘filter’ (individual) condition for phenotyped individual
> select: the ‘select’ (trait) condition for phenotyped individual
> arrange: the ‘arrange’ (order) condition for phenotyped individual
> job_traits: the trait need quality control and its definition and range
breeding_plan: the genetic evaluation plan
> job_name: the name of phenotype quality control job
> sample_info: the filename with absolute path or relative path to JSON file of phenotype data
> repeated_records: whether phenotype data contains repeated records
> multi_trait: whether phenotype data contains multiple traits
> vc_vars: the filename of variance component data
> vc_covars: the filename of covariance component data
> random_ratio: the least random effect ratio to phenotype variance
> job_traits: the trait need analysis and its covariate, fixed effect, and random effect
{
"genotype": "../02plinkb",
"pedigree": "../05others/pedigree.txt",
"selection_index": "100 - 0.2 * T1 + 0.8 * T2",
"threads": 16,
"genetic_progress": [],
"breeding_value_index": "-0.2 * T1 + 0.8 * T2",
"auto_optimization": true,
"quality_control_plan": {
"genotype_quality_control":{
"filter": "F1 == 'Male'",
"filter_geno": 0.1,
"filter_mind": 0.1,
"filter_maf": 0.05,
"filter_hwe": 0.001
},
"pedigree_quality_control":{
"standard_ID": false,
"candidate_sire_file": [],
"candidate_dam_file": [],
"exclude_threshold": 0.1,
"assign_threshold": 0.05
},
"phenotype_quality_control":[
{
"job_name": "Data_Quality_Control_Demo",
"sample_info": "../05others/phenotype.txt",
"repeated_records": false,
"multi_trait": true,
"filter": "F1 == 'Male'",
"job_traits": [
{
"traits": "T1",
"definition": "T1",
"range": []
},
{
"traits": "T2",
"definition": "T2",
"range": []
}
]
}
]
},
"breeding_plan":[
{
"job_name": "EBV_Model_Demo",
"sample_info": "../05others/phenotype.txt",
"repeated_records": false,
"multi_trait": true,
"vc_vars": [],
"vc_covars": [],
"random_ratio": 0.05,
"job_traits": [
{
"traits": "T1",
"covariates": [],
"fixed_effects": ["F1", "F2"],
"random_effects": ["R1"]
},
{
"traits": "T2",
"covariates": [],
"fixed_effects": ["F1", "F2"],
"random_effects": ["R1"]
}
]
}
]
}
To evaluate the breeding program design,
SIMER
completes the following three
tasks:
(1) Data quality control for genotype,
pedigree, and phenotype
(2) Model optimization (i.e., the most
suitable covariate, fixed effect, and random effect)
(3) Construction of Selection Index and
calculation of Genetic Progress
# Get JSON file
<- system.file("extdata", "04breeding_plan", "plan1.json", package = "simer")
jsonFile
# It needs 'plink' and 'hiblup' software
<- simer.Data.Json(jsonFile = jsonFile) jsonList
Users can use global parameters to control the population properties , the number of threads used for simulation, and the output of simulation data.
simer
, main function of simulation:
Paramater | Default | Options | Description |
replication | 1 | num | the replication times of simulation. |
seed.sim | random | num | simulation random seed. |
out | ‘simer’ | character | the prefix of output files. |
outpath | NULL | character | the path of output files, Simer writes files only if outpath is not ‘NULL’. |
out.format | ‘numeric’ | ‘numeric’ or ‘plink’ | ‘numeric’ or ‘plink’, the data format of output files. |
pop.gen | 2 | num | the generations of simulated population. |
out.geno.gen | 1:2 | num vector | the output generations of genotype data. |
out.pheno.gen | 1:2 | num vector | the output generations of phenotype data. |
useAllGeno | FALSE | TRUE or FALSE | whether to use all genotype data to simulate phenotype. |
ncpus | 0 | num | the number of threads used, if NULL, (logical core number - 1) is automatically used. |
verbose | TRUE | TRUE or FALSE | whether to print detail. |
Users can calculate the number of individuals per
generation using IndPerGen
directly.
<- generate.pop(pop.ind = 100)
pop <- IndPerGen(pop = pop, pop.gen = 2, ps = c(0.8, 0.8), reprod.way = "randmate", sex.rate = 0.5, prog = 2) count.ind
SIMER
runs on multiple
threads. Users can easily change the number of threads
used for simulation by the following:
# Generate all simulation parameters
<- param.simer(out = "simer", ncpus = 2)
SP
# Run Simer
<- simer(SP) SP
Simulation of multiple populations can be
realized by for
by using R software.
# Replication times
<- 2
rep
# Result list
<- rep(list(NULL), rep)
SPs
for (i in 1:rep) {
# Generate all simulation parameters
<- param.simer(replication = i, seed.sim = i, out = "simer")
SP
# Run Simer
<- simer(SP)
SPs[[i]] }
SIMER
will not output files by default.
A series of files with the prefix out
will output when
specifying outpath
.
### 01 Numeric Format ###
# Generate all simulation parameters
<- param.simer(
SP # SP = SP, # uncomment it when users already have a 'SP'
out = "simer",
outpath = getwd(),
out.format = "numeric"
)
# Run Simer
<- simer(SP)
SP
### 02 PLINK Binary Format ###
# Generate all simulation parameters
<- param.simer(
SP # SP = SP, # uncomment it when users already have a 'SP'
out = "simer",
outpath = getwd(),
out.format = "plink"
)
# Run Simer
<- simer(SP) SP
Output of genotype and phenotype can be
generation-selective using
out.geno.gen
and out.pheno.gen
.
# Generate all simulation parameters
<- param.simer(out = "simer", outpath = getwd(), pop.gen = 2, out.geno.gen = 1:2, out.pheno.gen = 1:2)
SP
# Run Simer
<- simer(SP) SP
SIMER
outputs data including
annotation data, genotype
data, and phenotype data in the
following two format.
Numeric format:
simer.geno.ind
contains indice of genotyped
individuals;
simer.geno.desc
and simer.geno.bin
contain
genotype matrix of all individuals;
simer.map
contains input map with block information and
recombination information;
simer.ped
contains pedigree of individuals;
simer.phe
contains phenotype of individuals.
PLINK Binary format:
simer.bim
contains marker information of genotype
data;
simer.bed
contains genotype data in binary format;
simer.fam
contains sample information of genotype
data;
simer.ped
contains pedigree of individuals;
simer.phe
contains phenotype of individuals.
Annotation data contains SNP name, Chromosome name, Base Position, ALT, REF, and the QTN genetic effect. Note that only markers selected as QTNs have values.
# Generate all simulation parameters
<- param.simer(out = "simer")
SP
# Run Simer
<- simer(SP)
SP
# Show annotation data
head(SP$map$pop.map)
SNP Chrom BP ALT REF QTN1_A1 M1 1 130693 C A NA
2 M2 1 168793 G A NA
3 M3 1 286553 A T NA
4 M4 1 306913 C G NA
5 M5 1 350926 T A NA
6 M6 1 355889 A C NA
Genotype data is stored in
big.matrix
format.
# Generate all simulation parameters
<- param.simer(out = "simer")
SP
# Run Simer
<- simer(SP)
SP
# Show genotype data
print(SP$geno$pop.geno)
$gen1
"big.matrix"
An object of class "address":
Slot <pointer: 0x00000000176f09e0>
$gen2
"big.matrix"
An object of class "address":
Slot <pointer: 0x00000000176ef940>
print(SP$geno$pop.geno$gen1[1:6, 1:6])
1] [,2] [,3] [,4] [,5] [,6]
[,1,] 0 2 0 1 0 2
[2,] 1 1 1 1 0 0
[3,] 0 1 2 2 1 0
[4,] 2 0 1 1 1 0
[5,] 2 1 0 1 2 1
[6,] 1 2 1 1 1 2 [
Phenotype data contains sample ID, generation index, family index, within-family index, sire, dam, sex, phenotype, TBV, TGV, and other effects.
# Generate all simulation parameters
<- param.simer(out = "simer")
SP
# Run Simer
<- simer(SP)
SP
# Show phenotype data
head(SP$pheno$pop$gen1)
index gen fam infam sir dam sex T1 T1_TBV T1_TGV T1_A_eff T1_E_eff1 1 1 1 1 0 0 1 -0.4934935 -1.3507888 -1.3507888 -1.3507888 0.8572953
2 2 1 2 2 0 0 1 7.7710404 -1.6756353 -1.6756353 -1.6756353 9.4466757
3 3 1 3 3 0 0 1 -4.6567338 -2.2608387 -2.2608387 -2.2608387 -2.3958951
4 4 1 4 4 0 0 1 -5.9064589 -1.7394139 -1.7394139 -1.7394139 -4.1670450
5 5 1 5 5 0 0 1 -16.7438931 -2.8000846 -2.8000846 -2.8000846 -13.9438085
6 6 1 6 6 0 0 1 6.0043912 0.3413561 0.3413561 0.3413561 5.6630351
For SIMER:
Hope it will be coming soon!
For ADI model:
Kao, Chenhung, et al. "Modeling Epistasis of Quantitative Trait Loci Using Cockerham's Model." Genetics 160.3 (2002): 1243-1261.
For build.cov:
B. D. Ripley "Stochastic Simulation." Wiley-Interscience (1987): Page 98.
:sos: Question1: Failing to install “devtools”:
ERROR: configuration failed for package ‘git2r’
removing ‘/Users/acer/R/3.4/library/git2r’
ERROR: dependency ‘git2r’ is not available for package ‘devtools’
removing ‘/Users/acer/R/3.4/library/devtools’
:yum: Answer: Please try following codes in terminal:
apt-get install libssl-dev/unstable
:sos: Question2: When installing packages from Github with “devtools”, an error occurred:
Error in curl::curl_fetch_disk(url, x$path, handle = handle): Problem with the SSL CA cert (path? access rights?)
:yum: Answer: Please try following codes and then try agian.
library(httr)
set_config(config(ssl_verifypeer = 0L))
Questions, suggestions, and bug reports are welcome and appreciated. :arrow_right:
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.