The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Introduction

sim1000G allows for easy simulation of unrelated individuals starting from sequencing 1000 genomes varians.

The following, somewhat complicated example, showcases the following:

The original 1000 genomes VCF files are obtained from 1000 genomes ftp site, at the location:

http://hgdownload.cse.ucsc.edu/gbdb/hg19/1000Genomes/phase3/

Generating IDs of individuals to extract

sink(tempfile())
ped_file_1000genomes = system.file("examples", "20130606_g1k.ped", package = "sim1000G")

ped = read.table(ped_file_1000genomes,h=T,as=T,sep="\t")

pop1 = c("CEU","TSI","GBR")
id1 = ped$Individual.ID [ ped$Population %in% pop1 ]



id2 = ped$Individual.ID [ ped$Population == "ASW" ]


pop_map = ped$Population
names(pop_map) = ped$Individual.ID



write_sample_files = 0

if(write_sample_files == 1) {
  cat(c(id1,id2),file="/tmp/samples1.txt",sep="\n")
  # cat(c(id2),file="/tmp/samples2.txt",sep="\n")
}

Extracting variant sets using bcftools

We extract the CEU,TSI,GBR and ASW samples from a region of chromosome 4 from 73MBp to 74MBp using bcftools. The following command are run in the shell:


#77356278-77703432

INPUT_VCF=ALL.chr4.phase3_shapeit2_mvncall_integrated_v5a.20130502.genotypes.vcf.gz

bcftools view -S /tmp/samples1.txt -r 4:73000000-74000000 --force-samples $INPUT_VCF > /tmp/chr4-80.vcf

bcftools  filter -i 'AF>0 && EUR_AF>0 && AFR_AF>0' < /tmp/chr4-80.vcf | gzip > /tmp/chr4-80-filt.vcf.gz

Reading the vcf file

library(sim1000G)


vcf_file = "/tmp/chr4-80-filt.vcf.gz"

if(1) {
examples_dir = system.file("examples", package = "sim1000G")
vcf_file = file.path(examples_dir, "region-chr4-93-TMEM156.vcf.gz" )
}


vcf  = readVCF(vcf_file,   maxNumberOfVariants = 200 , min_maf = 0.02, max_maf = 0.32)

table( pop_map[ vcf$individual_ids ])

C = cor(t( vcf$gt1+vcf$gt2))^2
gplots::heatmap.2(C,col=rev( heat.colors(100) ) ,Rowv=F,Colv=F,trace="none",breaks=seq(0,1,l=101))

plot of chunk unnamed-chunk-4

#gplots::heatmap.2(cor(t(vcf2$gt1))^2,col=rev( heat.colors(100) ) ,Rowv=F,Colv=F,trace="none")



if(0) {
ids = vcf$individual_ids


id_pop1 = which(ids %in% id1)
id_pop2 = which(ids %in% id2)



gplots::heatmap.2(cor(t( vcf$gt1[,id_pop1]+vcf$gt2[,id_pop1]))^2,col=rev( heat.colors(100) ) ,Rowv=F,Colv=F,trace="none",breaks=seq(0,1,l=101))


gplots::heatmap.2(cor(t( vcf$gt1[,id_pop2]+vcf$gt2[,id_pop2]))^2,col=rev( heat.colors(100) ) ,Rowv=F,Colv=F,trace="none",breaks=seq(0,1,l=101))

}

Starting two distinct simulations for the two sample sets and simulating unrelated individuals

#

startSimulation(vcf, subset = id1)

saveSimulation("pop1")


N = 200
id = c()
for(i in 1:N) id[i] = SIM$addUnrelatedIndividual()

genotypes = retrieveGenotypes(id)

gplots::heatmap.2(cor( genotypes )^2,col=rev( heat.colors(100) ) ,Rowv=F,Colv=F,trace="none",breaks=seq(0,1,l=101))



startSimulation(vcf, subset = id2)

saveSimulation("pop2")


N = 200
id = c()
for(i in 1:N) id[i] = SIM$addUnrelatedIndividual()

genotypes2 = retrieveGenotypes(id)

gplots::heatmap.2(cor( genotypes2 )^2,col=rev( heat.colors(100) ) ,Rowv=F,Colv=F,trace="none",breaks=seq(0,1,l=101))

Combining the two datasets and running SKAT

library(SKAT)

loadSimulation("pop1")

plot(apply(genotypes,2,mean), apply(genotypes2,2,mean))

gt = rbind(genotypes,genotypes2)

#gt = genotypes

dim(gt)

maf = apply(gt,2,mean,na.rm=T)/2
apply(gt,2,function(x) sum(is.na(x)))

flip  = which(maf > 0.5) ; gt[,flip] = 2 - gt[,flip]


#gt = genotypes

dim(gt)

maf = apply(gt,2,mean,na.rm=T)/2
plot(maf)

sum(maf==0)


apply(gt,2,function(x) sum(is.na(x)))



flip  = which(maf > 0.5)
gt[,flip] = 2 - gt[,flip]


dim(gt)


effect_sizes = rep(0, ncol(gt))
nvar = length(effect_sizes)

s = sample(1:nvar, 33)
effect_sizes[s] = 5


apply(gt[,s],1,sum)




predictor2 = function(b, geno) {
    x = b[1] 
    for(i in 1:ncol(geno)) { x = x  + b[i+1] * ( geno[,i] > 0) + b[i+1] * ( geno[,i] > 1)   }
    exp(x) / (1+exp(x) )
}

p =predictor2 (  c(-1.5,effect_sizes) ,  gt)



phenotype = rbinom( length(p) , 1 , p ) 

#phenotype = sample(phenotype)
obj<-SKAT_Null_Model(phenotype ~ 1, out_type="D")


library(SKAT)
SKATBinary((gt),obj)$p.value

Genetic maps in sim1000G

Through the functions readGeneticMap and downloadGeneticMap, we provide the functionality to automatically download genetic maps for GRCH37 build of the human genome.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.