The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Title: Sigmoid Functions for Machine Learning
Version: 1.4.0
Description: Several different sigmoid functions are implemented, including a wrapper function, SoftMax preprocessing and inverse functions.
Depends: R (≥ 3.2.2)
Encoding: UTF-8
License: GPL-3
RoxygenNote: 7.2.0
Suggests: covr, knitr, rmarkdown, ggplot2, testthat
VignetteBuilder: knitr
NeedsCompilation: no
Packaged: 2022-06-18 14:22:15 UTC; bquast
Author: Bastiaan Quast [aut, cre]
Maintainer: Bastiaan Quast <bquast@gmail.com>
Repository: CRAN
Date/Publication: 2022-06-18 14:40:02 UTC

Gompertz

Description

maps numeric vector using Gompertz function

Usage

Gompertz(x, a = 1, b = 1, c = 1)

Arguments

x

input vector

a

see details

b

see details

c

see details


SoftMax

Description

SoftMax preprocessing

Usage

SoftMax(x, lambda = 2)

Arguments

x

input vector

lambda

see details


SoftPlus

Description

maps numeric input vector using SoftPlus function

Usage

softplus(x)

Arguments

x

input vector


Inverse Gompertz

Description

maps numeric vector using Gompertz function

Usage

inverse_Gompertz(x)

Arguments

x

input vector Gompertz values


Leaky Rectified Linear Unit

Description

maps numeric vector using leaky ReLU function

Usage

leakyrelu(x)

Arguments

x

input vector


Standard Logistic

Description

maps numeric vector using logistic function

Usage

logistic(x, k = 1, x0 = 0)

Arguments

x

input vector

k

see details

x0

see details


Logit

Description

maps numeric vector using logit function

Usage

logit(x)

Arguments

x

input vector


Rectified Linear Unit

Description

maps numeric vector using ReLU function

Usage

relu(x)

Arguments

x

input vector


ReLU Derivative

Description

Converts output of ReLU function to its derivative.

Usage

relu_output_to_derivative(x)

Arguments

x

vector or ReLU values


Sigmoid

Description

computes sigmoid nonlinearity

Usage

sigmoid(
  x,
  method = c("logistic", "Gompertz", "tanh", "ReLU", "leakyReLU"),
  inverse = FALSE,
  SoftMax = FALSE,
  ...
)

Arguments

x

numeric vector

method

type of sigmoid function

inverse

use the inverse of the method (reverses)

SoftMax

use SoftMax preprocessing

...

arguments to pass on the method

Examples

# create input vector
a <- seq(-10,10)

# use sigmoid with default standard logistic
( b <- sigmoid(a) )

# show shape
plot(b)

# inverse
hist( a - sigmoid(b, inverse=TRUE) )

# with SoftMax
( c <- sigmoid(a, SoftMax=TRUE) )

# show difference
hist(b-c)

Sigmoid Derivative

Description

Convert output of sigmoid function to its derivative.

Usage

sigmoid_output_to_derivative(x)

Arguments

x

vector of sigmoid values


SoftPlus Derivative

Description

Convert output of SoftPlus function to its derivative.

Usage

softplus_output_to_derivative(x)

Arguments

x

vector of SoftPlus values


Tanh Derivative

Description

Convert output of tanh function to its derivative.

Usage

tanh_output_to_derivative(x)

Arguments

x

vector of tanh values

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.