The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
This vignette elaborates and demonstrates the asymmetric and causal
Shapley value frameworks introduced by Frye,
Rowat, and Feige (2020) and Heskes et al.
(2020), respectively. We also consider the marginal and
conditional Shapley value frameworks, see Lundberg and Lee (2017) and Aas, Jullum, and Løland (2021), respectively. We
demonstrate the frameworks on the bike sharing dataset
from the UCI Machine Learning Repository. The setup is based on the
CauSHAPley
package, which is the code
supplement to the Heskes et al. (2020)
paper. The CauSHAPley
package was based on an old version
of shapr
and was restricted to the gaussian
approach (see section 6 in Heskes et al.
(2020) for more details).
We have extended the causal Shapley value framework to work for all
Monte Carlo-based approaches (independence
(not
recommended), empirical
, gaussian
,
copula
, ctree
, vaeac
and
categorical
), while the extension of the asymmetric Shapley
value framework works for all the Monte Carlo and regression-based
approaches. Our generalization is of uttermost importance, as many
real-world data sets are far from the Gaussian distribution, and,
compared to CauSHAPley
, our implementation can utilize all
of shapr
’s new features, such as batch computation,
parallelization and iterative computation for both feature-wise and
group-wise Shapley values.
The main differences between the marginal, conditional, and casual Shapley value frameworks is that they sample/generate the Monte Carlo samples from the marginal distribution, (conventional) observational conditional distribution, and interventional conditional distribution, respectively. Asymmetric means that we do not consider all possible coalitions, but rather only the coalitions that respects a causal ordering.
Asymmetric (conditional) Shapley values were proposed by Frye, Rowat, and Feige (2020) as a way to incorporate causal knowledge in the real world by computing the Shapley value explanations using only the feature combinations/coalitions consistent with a (partial) causal ordering. See the figure below for a schematic overview of the causal ordering we are going to use in the examples in this vignette. In the figure, we see that our causal ordering consists of three components: \(\tau_1 = \{X_1\}\), \(\tau_2 = \{X_2, X_3\}\), and \(\tau_3 = \{X_4, X_5, X_6, X_7\}\). See the code section for what the features represent.
To elaborate, instead of considering the \(2^M\) possible coalitions, where \(M\) is the number of features, asymmetric Shapley values only consider the subset of coalitions which respects the causal ordering. For our causal ordering, this means that the asymmetric Shapley value explanation framework skips the coalitions where \(X_2\) is included but \(X_1\), as \(X_1\) is the ancestor of \(X_2\). This will skew the explanations towards distal/root causes, see Section 3.2 in Frye, Rowat, and Feige (2020).
We can use all approaches in shapr
, both Monte
Carlo-based and regression based methods, to compute the asymmetric
Shapley values. This is because the asymmetric Shapley value explanation
framework does not change how we compute the contribution functions
\(v(S)\), but rather which of the
coalitions \(S\) that are used to
compute the Shapley value explanations. This means that the number of
coalitions are no longer \(O(2^M)\),
but rather \(O(2^{\tau_0})\), where
\(\tau_0 = \operatorname{max}_i
|\tau_i|\) is the number of features (\(|\tau_i|\)) in the largest component of the
causal ordering.
Furthermore, asymmetric Shapley values supports groups of features, but then the causal ordering must be given on the group level instead of on the feature level. The asymmetric Shapley value framework also supports sampling of coalitions where the sampling is done from the set of coalitions that respects the causal ordering.
Finally, we want make a remark that asymmetric conditional Shapley values are equivalent to asymmetric causal Shapley values (see below) when we only use the coalitions respecting the causal ordering and assuming that all dependencies within chain components are induced by mutual interactions.
Causal Shapley values were proposed by Heskes
et al. (2020) as a way to explain the total effect of features on
the prediction by taking into account their causal relationships and
adapting the sampling procedure in shapr
. More precisely,
they propose to employ Pearl’s do-calculus to circumvent the
independence assumption, made by Lundberg and Lee
(2017), without sacrificing any of the desirable properties of
the Shapley value framework. The causal Shapley value explanation
framework can also separate the contribution of direct and indirect
effects, which makes them principally different from marginal and
conditional Shapley values. The framework also provides a more direct
and robust way to incorporate causal knowledge, compared to the
asymmetric Shapley value explanation framework.
To compute causal Shapley values, we have to specify a (partial) causal ordering and make an assumption about the confounding in each component. Together, they form a causal chain graph which contains directed and undirected edges. All features that are treated on an equal footing are linked together with undirected edges and become part of the same chain component. Edges between chain components are directed and represent causal relationships. In the figure below, we have the same causal ordering as above, but we have in addition made the assumption that we have confounding in the second component, but no confounding in the first and third components. This allows us to correctly distinguishes between dependencies that are due to confounding and mutual interactions. That is, in the figure, the dependencies in chain component \(\tau_2\) are assumed to be the result of a common confounder, and those in \(\tau_3\) of mutual interactions, while we have no mutual interactions in \(\tau_1\) as it is a singleton.
Computing the effect of an intervention depends on how we interpret the generative process that lead to the feature dependencies within each component. If they are the result of marginalizing out a common confounder, then intervention on a particular feature will break the dependency with the other features, and we denote the set of these chain components by \(\mathcal{T}_{\text{confounding}}\). For the components with mutual feature interactions, setting the value of a feature effects the distribution of the variables within the same component. We denote the set of these components by \(\mathcal{T}_{\,\overline{\text{confounding}}}\).
Heskes et al. (2020) described how any
expectation by intervention needed to compute the causal Shapley values
can be translated to an expectation by observation, by using the
interventional formula for causal chain graphs: \[\begin{align}
\label{eq:do}
P(X_{\bar{\mathcal{S}}} \mid do(X_\mathcal{S} = x_\mathcal{S}))
= &
\prod_{\tau \in \mathcal{T}_{\,\text{confounding}}}
P(X_{\tau \cap \bar{\mathcal{S}}} \mid X_{\text{pa}(\tau) \cap
\bar{\mathcal{S}}}, x_{\text{pa}(\tau) \cap \mathcal{S}}) \times \tag{1}
\\
& \quad
\prod_{\tau \in \mathcal{T}_{\,\overline{\text{confounding}}}}
P(X_{\tau \cap \bar{\mathcal{S}}} \mid X_{\text{pa}(\tau) \cap
\bar{\mathcal{S}}}, x_{\text{pa}(\tau) \cap \mathcal{S}}, x_{\tau \cap
\mathcal{S}}).
\end{align}\] Here, any of the Monte Carlo-based approaches in
shapr
can be used to compute the conditional
distributions/observational expectations. The marginals are estimated
from the training data for all approaches except gaussian
,
for which we use the marginals of the Gaussian distribution instead.
For specific causal chain graphs, the causal Shapley value framework simplifies to symmetric conditional, asymmetric conditional, and marginal Shapley values, see Corollary 1 to 3 in the supplement of Heskes et al. (2020).
Causal Shapley values are equivalent to marginal Shapley values when all \(M\) features are combined into a single component \(\tau = \mathcal{M} = \{1,2,...,M\}\) and all dependencies are induced by confounding. Then \(\text{pa}(\tau) = \emptyset\), and \(P(X_{\bar{\mathcal{S}}} \mid do(X_\mathcal{S} = x_\mathcal{S}))\) in Equation (\(\ref{eq:do}\)) simplifies to \(P(X_{\bar{\mathcal{S}}} \mid do(X_\mathcal{S} = x_\mathcal{S})) = P(X_{\bar{\mathcal{S}}})\), as specified in Lundberg and Lee (2017).
The Monte Carlo samples for the marginals are generated by sampling
from the training data, except for the gaussian
approach
where we use the marginals of the estimated multivariate Gaussian
distribution. This means that for all other approaches, this is the same
as using the independence
approach in the conditional
Shapley value explanation framework.
Causal Shapley values are equivalent to symmetric conditional Shapley values when all \(M\) features are combined in a single component \(\tau = \mathcal{M} = \{1,2,...,M\}\) and all dependencies are induced by mutual interaction. Then \(\text{pa}(\tau) = \emptyset\), and \(P(X_{\bar{\mathcal{S}}} \mid do(X_\mathcal{S} = x_\mathcal{S}))\) in Equation (\(\ref{eq:do}\)) simplifies to \(P(X_{\bar{\mathcal{S}}} \mid do(X_\mathcal{S} = x_\mathcal{S})) = P(X_{\bar{\mathcal{S}}} \mid X_\mathcal{S} = x_\mathcal{S})\), as specified in Aas, Jullum, and Løland (2021). Symmetric means that we consider all coalitions.
We demonstrate the frameworks on the bike sharing dataset
from the UCI Machine Learning Repository. We let the features be the
number of days since January 2011 (trend
), two cyclical
variables representing the season (cosyear
,
sinyear
), temperature (temp
), feeling
temperature (atemp
), wind speed (windspeed
),
and humidity (hum
). The first three features are considered
to be a potential cause of the four weather-related features. The bike
rental is strongly seasonal and shows an upward trend, as illustrated in
the figure below. The bike data is split randomly into a training (80%)
and test/explicand (20%) set. We train an XGBoost
model for
100 rounds with default variables to act as the model we want to
explain.
In the table below, we highlight the Shapley value explanation
frameworks introduced above and how to access them by changing the
arguments asymmetric
, ordering
, and
confounding
in shapr::explain()
. Note that
symmetric conditional Shapley values are the default version, i.e., by
default asymmetric = FALSE
, ordering = NULL
,
confounding = NULL
.
Framework | Sampling | Approaches | asymmetric |
ordering |
confounding |
---|---|---|---|---|---|
Sym. Conditional | \(P(X_{\bar{\mathcal{S}}} \mid (X_\mathcal{S} = x_\mathcal{S})\) | All | FALSE |
NULL |
NULL |
Asym. Conditional | \(P(X_{\bar{\mathcal{S}}} \mid (X_\mathcal{S} = x_\mathcal{S})\) | All | TRUE |
list(...) |
NULL |
Sym. Causal | \(P(X_{\bar{\mathcal{S}}} \mid do(X_\mathcal{S} = x_\mathcal{S}))\) | All MC-based | FALSE |
list(...) |
c(...) |
Asym. Causal | \(P(X_{\bar{\mathcal{S}}} \mid do(X_\mathcal{S} = x_\mathcal{S}))\) | All MC-based | TRUE |
list(...) |
c(...) |
Sym. Marginal | \(P(X_{\bar{\mathcal{S}}})\) | indep. , gaussian |
FALSE |
NULL |
TRUE |
First, we load the needed libraries, set up the training/explicand
data, plot the data, and train an xgboost
model.
library(ggplot2)
library(xgboost)
library(data.table)
library(shapr)
# Additional packages which are only used for plotting in this vignette.
# There are not listed as dependencies is shapr
library(GGally)
library(ggpubr)
library(gridExtra)
# Ensure that shapr's functions are prioritzed, otherwise we need to use the `shapr::`
# prefix when calling explain(). The `conflicted` package is imported by `tidymodels`.
conflicted::conflicts_prefer(shapr::explain, shapr::prepare_data)
# Set up the data
# Can also download the data set from the source https://archive.ics.uci.edu/dataset/275/bike+sharing+dataset
# temp <- tempfile()
# download.file("https://archive.ics.uci.edu/static/public/275/bike+sharing+dataset.zip", temp)
# bike <- read.csv(unz(temp, "day.csv"))
# unlink(temp)
bike <- read.csv("../inst/extdata/day.csv")
# Difference in days, which takes DST into account
bike$trend <- as.numeric(difftime(bike$dteday, bike$dteday[1], units = "days"))
bike$cosyear <- cospi(bike$trend / 365 * 2)
bike$sinyear <- sinpi(bike$trend / 365 * 2)
# Unnormalize variables (see data set information in link above)
bike$temp <- bike$temp * (39 - (-8)) + (-8)
bike$atemp <- bike$atemp * (50 - (-16)) + (-16)
bike$windspeed <- 67 * bike$windspeed
bike$hum <- 100 * bike$hum
# Plot the data
ggplot(bike, aes(x = trend, y = cnt, color = temp)) +
geom_point(size = 0.75) +
scale_color_gradient(low = "blue", high = "red") +
labs(colour = "temp") +
xlab("Days since 1 January 2011") +
ylab("Number of bikes rented") +
theme_minimal() +
theme(legend.position = "right", legend.title = element_text(size = 10))
# Define the features and the response variable
x_var <- c("trend", "cosyear", "sinyear", "temp", "atemp", "windspeed", "hum")
y_var <- "cnt"
# NOTE: To avoid RNG reproducibility issues across different systems, we
# load the training-test split from a file. 80% training and 20% test
train_index <- readRDS("../inst/extdata/train_index.rds")
# Training data
x_train <- as.matrix(bike[train_index, x_var])
y_train_nc <- as.matrix(bike[train_index, y_var]) # not centered
y_train <- y_train_nc - mean(y_train_nc)
# Plot pairs plot
GGally::ggpairs(x_train)
# Test/explicand data
x_explain <- as.matrix(bike[-train_index, x_var])
y_explain_nc <- as.matrix(bike[-train_index, y_var]) # not centered
y_explain <- y_explain_nc - mean(y_train_nc)
# Get 6 explicands to plot the Shapley values of with a wide spread in their predicted outcome
n_index_x_explain <- 6
index_x_explain <- order(y_explain)[seq(1, length(y_explain), length.out = n_index_x_explain)]
y_explain[index_x_explain]
#> [1] -3900.0324 -1872.0324 -377.0324 411.9676 1690.9676 3889.9676
# Fit an XGBoost model to the training data
model <- xgboost::xgboost(
data = x_train,
label = y_train,
nround = 100,
verbose = FALSE
)
# Save the phi0
phi0 <- mean(y_train)
# Look at the root mean squared error
sqrt(mean((predict(model, x_explain) - y_explain)^2))
#> [1] 798.7148
ggplot(
data.table("response" = y_explain[, 1], "predicted_response" = predict(model, x_explain)),
aes(response, predicted_response)
) +
geom_point()
We are going to use the causal_ordering
and
confounding
illustrated in the figures above. For
causal_ordering
, we can either provide the index of feature
or the feature names. Thus, the following two versions of
causal_ordering
will produce equivalent results.
Furthermore, we assume that we have confounding for the second component
(i.e., the season has an effect on the weather) and no confounding for
the third component (i.e., we do not how to model the intricate
relations between the weather features).
causal_ordering <- list(1, c(2, 3), c(4:7))
causal_ordering <- list("trend", c("cosyear", "sinyear"), c("temp", "atemp", "windspeed", "hum"))
confounding <- c(FALSE, TRUE, FALSE)
To make the rest of the vignette easier to follow, we create some helper functions that plot and summarize the results of the explanation methods. This code block is optional to understand and can be skipped.
# Extract the MSEv criterion scores and elapsed times
print_MSEv_scores_and_time <- function(explanation_list) {
res <- as.data.frame(t(sapply(
explanation_list,
function(explanation) {
round(c(
explanation$MSEv$MSEv$MSEv,
explanation$MSEv$MSEv$MSEv_sd,
difftime(explanation$timing$end_time, explanation$timing$init_time, units = "secs")
), 2)
}
)))
colnames(res) <- c("MSEv", "MSEv_sd", "Time (secs)")
return(res)
}
# Print the full time information
print_time <- function(explanation_list) {
t(sapply(explanation_list, function(explanation) explanation$timing$total_time_secs))
}
# Make beeswarm plots
plot_beeswarms <- function(explanation_list, title = "", ...) {
# Make the beeswarm plots
grobs <- lapply(seq(length(explanation_list)), function(explanation_idx) {
gg <- plot(explanation_list[[explanation_idx]], plot_type = "beeswarm", ...) +
ggplot2::ggtitle(tools::toTitleCase(gsub("_", " ", names(explanation_list)[[explanation_idx]])))
# Flip the order such that the features comes in the right order
gg <- gg +
ggplot2::scale_x_discrete(limits = rev(levels(gg$data$variable)[levels(gg$data$variable) != "none"]))
})
# Get the limits
ylim <- sapply(grobs, function(grob) ggplot2::ggplot_build(grob)$layout$panel_scales_y[[1]]$range$range)
ylim <- c(min(ylim), max(ylim))
# Update the limits
grobs <- suppressMessages(lapply(grobs, function(grob) grob + ggplot2::coord_flip(ylim = ylim)))
# Make the combined plot
gridExtra::grid.arrange(
grobs = grobs, ncol = 1,
top = grid::textGrob(title, gp = grid::gpar(fontsize = 18, font = 8))
)
}
We start by demonstrating how to compute symmetric conditional
Shapley values. This is the default version in shapr
and
there is no need to specify the arguments below. However, we have
specified them for the sake of clarity. We use the
gaussian
, ctree
, and
regression_separate
(xgboost
with default
hyperparameters) approaches, but any other approach can also be
used.
# list to store the results
explanation_sym_con <- list()
explanation_sym_con[["gaussian"]] <- explain(
model = model,
x_train = x_train,
x_explain = x_explain,
approach = "gaussian",
phi0 = phi0,
n_MC_samples = 1000,
asymmetric = FALSE, # Default value (TRUE will give the same since `causal_ordering = NULL`)
causal_ordering = NULL, # Default value
confounding = NULL # Default value
)
#> Note: Feature classes extracted from the model contains NA.
#> Assuming feature classes from the data are correct.
#> Success with message:
#> max_n_coalitions is NULL or larger than or 2^n_features = 128,
#> and is therefore set to 2^n_features = 128.
#>
#> ── Starting `shapr::explain()` at 2024-11-21 22:40:52 ──────────────────────────────────────────────────────────────────────────────────────────────────────
#> • Model class: <xgb.Booster>
#> • Approach: gaussian
#> • Iterative estimation: TRUE
#> • Number of feature-wise Shapley values: 7
#> • Number of observations to explain: 144
#> • Computations (temporary) saved at: '/tmp/RtmppO00aE/shapr_obj_1c345f7633c6a7.rds'
#>
#> ── iterative computation started ──
#>
#> ── Iteration 1 ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> ℹ Using 13 of 128 coalitions, 13 new.
#>
#> ── Iteration 2 ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> ℹ Using 26 of 128 coalitions, 12 new.
#>
#> ── Iteration 3 ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> ℹ Using 36 of 128 coalitions, 10 new.
#>
#> ── Iteration 4 ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> ℹ Using 38 of 128 coalitions, 2 new.
explanation_sym_con[["ctree"]] <- explain(
model = model,
x_train = x_train,
x_explain = x_explain,
approach = "ctree",
phi0 = phi0,
n_MC_samples = 1000,
asymmetric = FALSE, # Default value (TRUE will give the same since `causal_ordering = NULL`)
causal_ordering = NULL, # Default value
confounding = NULL # Default value
)
#> Note: Feature classes extracted from the model contains NA.
#> Assuming feature classes from the data are correct.
#> Success with message:
#> max_n_coalitions is NULL or larger than or 2^n_features = 128,
#> and is therefore set to 2^n_features = 128.
#>
#> ── Starting `shapr::explain()` at 2024-11-21 22:40:58 ──────────────────────────────────────────────────────────────────────────────────────────────────────
#> • Model class: <xgb.Booster>
#> • Approach: ctree
#> • Iterative estimation: TRUE
#> • Number of feature-wise Shapley values: 7
#> • Number of observations to explain: 144
#> • Computations (temporary) saved at: '/tmp/RtmppO00aE/shapr_obj_1c345f338decc8.rds'
#>
#> ── iterative computation started ──
#>
#> ── Iteration 1 ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> ℹ Using 13 of 128 coalitions, 13 new.
#>
#> ── Iteration 2 ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> ℹ Using 26 of 128 coalitions, 12 new.
#>
#> ── Iteration 3 ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> ℹ Using 36 of 128 coalitions, 10 new.
#>
#> ── Iteration 4 ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> ℹ Using 54 of 128 coalitions, 18 new.
#>
#> ── Iteration 5 ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> ℹ Using 64 of 128 coalitions, 10 new.
explanation_sym_con[["xgboost"]] <- explain(
model = model,
x_train = x_train,
x_explain = x_explain,
phi0 = phi0,
approach = "regression_separate",
regression.model = parsnip::boost_tree(engine = "xgboost", mode = "regression"),
asymmetric = FALSE, # Default value (TRUE will give the same as `causal_ordering = NULL`)
causal_ordering = NULL, # Default value
confounding = NULL # Default value
)
#> Note: Feature classes extracted from the model contains NA.
#> Assuming feature classes from the data are correct.
#> Success with message:
#> max_n_coalitions is NULL or larger than or 2^n_features = 128,
#> and is therefore set to 2^n_features = 128.
#>
#> ── Starting `shapr::explain()` at 2024-11-21 22:41:42 ──────────────────────────────────────────────────────────────────────────────────────────────────────
#> • Model class: <xgb.Booster>
#> • Approach: regression_separate
#> • Iterative estimation: TRUE
#> • Number of feature-wise Shapley values: 7
#> • Number of observations to explain: 144
#> • Computations (temporary) saved at: '/tmp/RtmppO00aE/shapr_obj_1c345f7e5e3fef.rds'
#>
#> ── iterative computation started ──
#>
#> ── Iteration 1 ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> ℹ Using 13 of 128 coalitions, 13 new.
#>
#> ── Iteration 2 ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> ℹ Using 26 of 128 coalitions, 12 new.
#>
#> ── Iteration 3 ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> ℹ Using 36 of 128 coalitions, 10 new.
#>
#> ── Iteration 4 ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> ℹ Using 54 of 128 coalitions, 18 new.
#>
#> ── Iteration 5 ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> ℹ Using 64 of 128 coalitions, 10 new.
We can then look at the \(\operatorname{MSE}_v\) evaluation scores to
compare the approaches. All approaches are comparable, but
xgboost
is clearly the fastest approach.
print_MSEv_scores_and_time(explanation_sym_con)
#> MSEv MSEv_sd Time (secs)
#> gaussian 1098008 77896.33 5.86
#> ctree 1095957 69223.49 43.90
#> xgboost 1154565 66463.44 8.61
We can then plot the Shapley values for the six explicands chosen above.
plot_SV_several_approaches(explanation_sym_con, index_x_explain) +
theme(legend.position = "bottom")
We can also make beeswarm plots of the Shapley values to look at the
structure of the Shapley values for all explicands. The figures are
quite similar, but with minor differences. E.g., the
gaussian
approach produces almost no Shapley values around
\(500\) for the trend
feature.
Then we look at the asymmetric conditional Shapley values. To obtain
these types of Shapley values, we have to specify that
asymmetric = TRUE
and a causal_ordering
. We
use causal_ordering = list(1, c(2, 3), c(4:7))
.
explanation_asym_con <- list()
explanation_asym_con[["gaussian"]] <- explain(
model = model,
x_train = x_train,
x_explain = x_explain,
phi0 = phi0,
n_MC_samples = 1000,
approach = "gaussian",
asymmetric = TRUE,
causal_ordering = causal_ordering,
confounding = NULL # Default value
)
#> Note: Feature classes extracted from the model contains NA.
#> Assuming feature classes from the data are correct.
#> Success with message:
#> max_n_coalitions is NULL or larger than or number of coalitions respecting the causal
#> ordering 20, and is therefore set to 20.
#>
#> ── Starting `shapr::explain()` at 2024-11-21 22:41:52 ──────────────────────────────────────────────────────────────────────────────────────────────────────
#> • Model class: <xgb.Booster>
#> • Approach: gaussian
#> • Iterative estimation: TRUE
#> • Number of feature-wise Shapley values: 7
#> • Number of observations to explain: 144
#> • Number of asymmetric coalitions: 20
#> • Causal ordering: {trend}, {cosyear, sinyear}, {temp, atemp, windspeed, hum}
#> • Computations (temporary) saved at: '/tmp/RtmppO00aE/shapr_obj_1c345f2569ff76.rds'
#>
#> ── iterative computation started ──
#>
#> ── Iteration 1 ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> ℹ Using 13 of 20 coalitions, 13 new.
explanation_asym_con[["gaussian_non_iterative"]] <- explain(
model = model,
x_train = x_train,
x_explain = x_explain,
phi0 = phi0,
n_MC_samples = 1000,
approach = "gaussian",
asymmetric = TRUE,
causal_ordering = causal_ordering,
confounding = NULL, # Default value
iterative = FALSE
)
#> Note: Feature classes extracted from the model contains NA.
#> Assuming feature classes from the data are correct.
#> Success with message:
#> max_n_coalitions is NULL or larger than or number of coalitions respecting the causal
#> ordering 20, and is therefore set to 20.
#>
#> ── Starting `shapr::explain()` at 2024-11-21 22:41:54 ──────────────────────────────────────────────────────────────────────────────────────────────────────
#> • Model class: <xgb.Booster>
#> • Approach: gaussian
#> • Iterative estimation: FALSE
#> • Number of feature-wise Shapley values: 7
#> • Number of observations to explain: 144
#> • Number of asymmetric coalitions: 20
#> • Causal ordering: {trend}, {cosyear, sinyear}, {temp, atemp, windspeed, hum}
#> • Computations (temporary) saved at: '/tmp/RtmppO00aE/shapr_obj_1c345f6e6f4e7c.rds'
#>
#> ── Main computation started ──
#>
#> ℹ Using 20 of 20 coalitions.
explanation_asym_con[["ctree"]] <- explain(
model = model,
x_train = x_train,
x_explain = x_explain,
phi0 = phi0,
n_MC_samples = 1000,
approach = "ctree",
asymmetric = TRUE,
causal_ordering = causal_ordering,
confounding = NULL # Default value
)
#> Note: Feature classes extracted from the model contains NA.
#> Assuming feature classes from the data are correct.
#> Success with message:
#> max_n_coalitions is NULL or larger than or number of coalitions respecting the causal
#> ordering 20, and is therefore set to 20.
#>
#> ── Starting `shapr::explain()` at 2024-11-21 22:41:55 ──────────────────────────────────────────────────────────────────────────────────────────────────────
#> • Model class: <xgb.Booster>
#> • Approach: ctree
#> • Iterative estimation: TRUE
#> • Number of feature-wise Shapley values: 7
#> • Number of observations to explain: 144
#> • Number of asymmetric coalitions: 20
#> • Causal ordering: {trend}, {cosyear, sinyear}, {temp, atemp, windspeed, hum}
#> • Computations (temporary) saved at: '/tmp/RtmppO00aE/shapr_obj_1c345f1934da5c.rds'
#>
#> ── iterative computation started ──
#>
#> ── Iteration 1 ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> ℹ Using 13 of 20 coalitions, 13 new.
explanation_asym_con[["xgboost"]] <- explain(
model = model,
x_train = x_train,
x_explain = x_explain,
phi0 = phi0,
approach = "regression_separate",
regression.model = parsnip::boost_tree(engine = "xgboost", mode = "regression"),
asymmetric = TRUE,
causal_ordering = causal_ordering,
confounding = NULL # Default value
)
#> Note: Feature classes extracted from the model contains NA.
#> Assuming feature classes from the data are correct.
#> Success with message:
#> max_n_coalitions is NULL or larger than or number of coalitions respecting the causal
#> ordering 20, and is therefore set to 20.
#>
#> ── Starting `shapr::explain()` at 2024-11-21 22:42:03 ──────────────────────────────────────────────────────────────────────────────────────────────────────
#> • Model class: <xgb.Booster>
#> • Approach: regression_separate
#> • Iterative estimation: TRUE
#> • Number of feature-wise Shapley values: 7
#> • Number of observations to explain: 144
#> • Number of asymmetric coalitions: 20
#> • Causal ordering: {trend}, {cosyear, sinyear}, {temp, atemp, windspeed, hum}
#> • Computations (temporary) saved at: '/tmp/RtmppO00aE/shapr_obj_1c345f10314ee0.rds'
#>
#> ── iterative computation started ──
#>
#> ── Iteration 1 ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> ℹ Using 13 of 20 coalitions, 13 new.
The asymmetric conditional Shapley value framework is faster as we only consider \(20\) coalitions (including empty and grand coalition) instead of all \(128\) coalitions (see code below).
print_MSEv_scores_and_time(explanation_asym_con)
#> MSEv MSEv_sd Time (secs)
#> gaussian 330603.3 36828.70 1.56
#> gaussian_non_iterative 306457.7 35411.60 1.32
#> ctree 260562.1 29428.95 8.31
#> xgboost 307562.1 39362.81 1.50
# Look at the number of coalitions considered. Decreased from 128 to 20.
explanation_sym_con$gaussian$internal$parameters$max_n_coalitions
#> [1] 128
explanation_asym_con$gaussian$internal$parameters$max_n_coalitions
#> [1] 20
# Here we can see the 20 coalitions that respects the causal ordering
explanation_asym_con$gaussian$internal$objects$dt_valid_causal_coalitions[["coalitions"]]
#> [[1]]
#> integer(0)
#>
#> [[2]]
#> [1] 1
#>
#> [[3]]
#> [1] 1 2
#>
#> [[4]]
#> [1] 1 3
#>
#> [[5]]
#> [1] 1 2 3
#>
#> [[6]]
#> [1] 1 2 3 4
#>
#> [[7]]
#> [1] 1 2 3 5
#>
#> [[8]]
#> [1] 1 2 3 6
#>
#> [[9]]
#> [1] 1 2 3 7
#>
#> [[10]]
#> [1] 1 2 3 4 5
#>
#> [[11]]
#> [1] 1 2 3 4 6
#>
#> [[12]]
#> [1] 1 2 3 4 7
#>
#> [[13]]
#> [1] 1 2 3 5 6
#>
#> [[14]]
#> [1] 1 2 3 5 7
#>
#> [[15]]
#> [1] 1 2 3 6 7
#>
#> [[16]]
#> [1] 1 2 3 4 5 6
#>
#> [[17]]
#> [1] 1 2 3 4 5 7
#>
#> [[18]]
#> [1] 1 2 3 4 6 7
#>
#> [[19]]
#> [1] 1 2 3 5 6 7
#>
#> [[20]]
#> [1] 1 2 3 4 5 6 7
We can then look at the beeswarm plots of the asymmetric conditional
Shapley value. The ctree
and xgboost
approaches produce similar figures, while the gaussian
approach both shrinks and groups the Shapley values for the
trend
feature, while it produces more negative values for
the cosyear
feature.
When going from symmetric to asymmetric Shapley values, we see that
many of the features’ Shapley values are now shrunken closer to zero,
especially temp
and atemp
.
We can also compare the obtained symmetric and asymmetric conditional
Shapley values for the 6 explicands. We often see that the asymmetric
version gives larger Shapley values to the distal/root causes, i.e.,
trend
and cosyear
, than the symmetric version.
This is in line with Section 3.2 in Frye, Rowat,
and Feige (2020).
# Order the symmetric and asymmetric conditional explanations into a joint list
explanation_sym_con_tmp <- copy(explanation_sym_con)
names(explanation_sym_con_tmp) <- paste0(names(explanation_sym_con_tmp), "_sym")
explanation_asym_con_tmp <- copy(explanation_asym_con)
names(explanation_asym_con_tmp) <- paste0(names(explanation_asym_con_tmp), "_asym")
explanation_asym_sym_con <- c(explanation_sym_con_tmp, explanation_asym_con_tmp)[c(1, 4, 2, 5, 3, 6)]
plot_SV_several_approaches(explanation_asym_sym_con, index_x_explain, brewer_palette = "Paired") +
theme(legend.position = "bottom")
For marginal Shapley values, we can only consider the symmetric
version as we must set causal_ordering = list(1:7)
(or
NULL
) and confounding = TRUE
. Setting
asymmetric = TRUE
will have no effect, as the causal
ordering consists of only a single component containing all features,
i.e., all coalitions respect the causal ordering. As stated above,
shapr
generates the marginal Monte Carlos samples from the
Gaussian marginals if approach = "gaussian"
, while for all
other Monte Carlo approaches the marginals are estimated from the
training data, i.e., assuming feature independence. Thus, it does not
matter if we set approach = "independence"
or any other of
the Monte Carlo-based approaches. We use
approach = "independence"
for clarity. Furthermore, we also
obtain marginal Shapley values by using the conditional Shapley value
framework with the independence
approach. However, note
that there will be a minuscule difference in the produced Shapley values
due to different sampling setups/orders.
explanation_sym_marg <- list()
# Here we sample from the estimated Gaussian marginals
explanation_sym_marg[["gaussian"]] <- explain(
model = model,
x_train = x_train,
x_explain = x_explain,
phi0 = phi0,
n_MC_samples = 1000,
approach = "gaussian",
asymmetric = FALSE,
causal_ordering = list(1:7),
confounding = TRUE
)
#> Note: Feature classes extracted from the model contains NA.
#> Assuming feature classes from the data are correct.
#> Success with message:
#> max_n_coalitions is NULL or larger than or 2^n_features = 128,
#> and is therefore set to 2^n_features = 128.
#>
#> ── Starting `shapr::explain()` at 2024-11-21 22:42:07 ──────────────────────────────────────────────────────────────────────────────────────────────────────
#> • Model class: <xgb.Booster>
#> • Approach: gaussian
#> • Iterative estimation: TRUE
#> • Number of feature-wise Shapley values: 7
#> • Number of observations to explain: 144
#> • Causal ordering: {trend, cosyear, sinyear, temp, atemp, windspeed, hum}
#> • Components with confounding: {trend, cosyear, sinyear, temp, atemp, windspeed, hum}
#> • Computations (temporary) saved at: '/tmp/RtmppO00aE/shapr_obj_1c345f39fa59d4.rds'
#>
#> ── iterative computation started ──
#>
#> ── Iteration 1 ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> ℹ Using 13 of 128 coalitions, 13 new.
#>
#> ── Iteration 2 ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> ℹ Using 26 of 128 coalitions, 12 new.
#>
#> ── Iteration 3 ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> ℹ Using 36 of 128 coalitions, 10 new.
# Here we sample from the marginals of the training data
explanation_sym_marg[["independence_marg"]] <- explain(
model = model,
x_train = x_train,
x_explain = x_explain,
phi0 = phi0,
n_MC_samples = 1000,
approach = "independence",
asymmetric = FALSE,
causal_ordering = list(1:7),
confounding = TRUE
)
#> Note: Feature classes extracted from the model contains NA.
#> Assuming feature classes from the data are correct.
#> Success with message:
#> max_n_coalitions is NULL or larger than or 2^n_features = 128,
#> and is therefore set to 2^n_features = 128.
#>
#> ── Starting `shapr::explain()` at 2024-11-21 22:42:17 ──────────────────────────────────────────────────────────────────────────────────────────────────────
#> • Model class: <xgb.Booster>
#> • Approach: independence
#> • Iterative estimation: TRUE
#> • Number of feature-wise Shapley values: 7
#> • Number of observations to explain: 144
#> • Causal ordering: {trend, cosyear, sinyear, temp, atemp, windspeed, hum}
#> • Components with confounding: {trend, cosyear, sinyear, temp, atemp, windspeed, hum}
#> • Computations (temporary) saved at: '/tmp/RtmppO00aE/shapr_obj_1c345f5892ee21.rds'
#>
#> ── iterative computation started ──
#>
#> ── Iteration 1 ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> ℹ Using 13 of 128 coalitions, 13 new.
#>
#> ── Iteration 2 ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> ℹ Using 26 of 128 coalitions, 12 new.
#>
#> ── Iteration 3 ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> ℹ Using 36 of 128 coalitions, 10 new.
# Here we use the conditional Shapley value framework with the `independence` approach
explanation_sym_marg[["independence_con"]] <- explain(
model = model,
x_train = x_train,
x_explain = x_explain,
phi0 = phi0,
n_MC_samples = 1000,
approach = "independence"
)
#> Note: Feature classes extracted from the model contains NA.
#> Assuming feature classes from the data are correct.
#> Success with message:
#> max_n_coalitions is NULL or larger than or 2^n_features = 128,
#> and is therefore set to 2^n_features = 128.
#>
#> ── Starting `shapr::explain()` at 2024-11-21 22:42:30 ──────────────────────────────────────────────────────────────────────────────────────────────────────
#> • Model class: <xgb.Booster>
#> • Approach: independence
#> • Iterative estimation: TRUE
#> • Number of feature-wise Shapley values: 7
#> • Number of observations to explain: 144
#> • Computations (temporary) saved at: '/tmp/RtmppO00aE/shapr_obj_1c345f5be5cbd9.rds'
#>
#> ── iterative computation started ──
#>
#> ── Iteration 1 ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> ℹ Using 13 of 128 coalitions, 13 new.
#>
#> ── Iteration 2 ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> ℹ Using 26 of 128 coalitions, 12 new.
#>
#> ── Iteration 3 ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> ℹ Using 36 of 128 coalitions, 10 new.
We can look the beeswarm plots
To compute (symmetric/asymmetric) causal Shapley values, we have to
provide the causal_ordering
and confounding
objects. We set them to be
causal_ordering = list(1, 2:3, 4:7)
and
confounding = c(FALSE, TRUE, FALSE)
, as explained
above.
The causal framework takes longer than the other frameworks, as
generating the the Monte Carlo samples often consists of a chain of
sampling steps. For example, for \(\mathcal{S}
= {2}\), we must generate \(X_1,X_3,X_4,X_5,X_6,X_7 \mid X_2\).
However, we cannot do this directly due to the
causal_ordering
and confounding
specified
above. To generate the Monte Carlo samples, we have to follow a chain of
sampling steps. More precisely, we first need to generate \(X_1\) from the marginal, then \(X_3 \mid X_1\), and finally \(X_4,X_5,X_6,X_7 \mid X_1,X_2,X_3\). The
latter two steps are done by using the provided approach
to
model the conditional distributions. The
internal$objects$S_causal_steps_strings
object contains the
sampling steps needed for the different feature combinations/coalitions
\(\mathcal{S}\).
For causal Shapley values, only the Monte Carlo-based approaches are applicable.
explanation_sym_cau <- list()
explanation_sym_cau[["gaussian"]] <- explain(
model = model,
x_train = x_train,
x_explain = x_explain,
phi0 = phi0,
n_MC_samples = 1000,
approach = "gaussian",
asymmetric = FALSE,
causal_ordering = list(1, 2:3, 4:7),
confounding = c(FALSE, TRUE, FALSE),
iterative = FALSE, # Set to FALSE to get a single iteration to illustrate sampling steps below
exact = TRUE
)
#> Note: Feature classes extracted from the model contains NA.
#> Assuming feature classes from the data are correct.
#> Success with message:
#> max_n_coalitions is NULL or larger than or 2^n_features = 128,
#> and is therefore set to 2^n_features = 128.
#>
#> ── Starting `shapr::explain()` at 2024-11-21 22:42:41 ──────────────────────────────────────────────────────────────────────────────────────────────────────
#> • Model class: <xgb.Booster>
#> • Approach: gaussian
#> • Iterative estimation: FALSE
#> • Number of feature-wise Shapley values: 7
#> • Number of observations to explain: 144
#> • Causal ordering: {trend}, {cosyear, sinyear}, {temp, atemp, windspeed, hum}
#> • Components with confounding: {cosyear, sinyear}
#> • Computations (temporary) saved at: '/tmp/RtmppO00aE/shapr_obj_1c345f8ccad78.rds'
#>
#> ── Main computation started ──
#>
#> ℹ Using 128 of 128 coalitions.
# Look at the sampling steps for the third coalition (S = {2})
explanation_sym_cau$gaussian$internal$iter_list[[1]]$S_causal_steps_strings$id_coalition_3
#> [1] "1|" "3|1" "4,5,6,7|1,2,3"
# Use the copula approach
explanation_sym_cau[["copula"]] <- explain(
model = model,
x_train = x_train,
x_explain = x_explain,
phi0 = phi0,
n_MC_samples = 1000,
approach = "copula",
asymmetric = FALSE,
causal_ordering = list(1, 2:3, 4:7),
confounding = c(FALSE, TRUE, FALSE)
)
#> Note: Feature classes extracted from the model contains NA.
#> Assuming feature classes from the data are correct.
#> Success with message:
#> max_n_coalitions is NULL or larger than or 2^n_features = 128,
#> and is therefore set to 2^n_features = 128.
#>
#> ── Starting `shapr::explain()` at 2024-11-21 22:43:13 ──────────────────────────────────────────────────────────────────────────────────────────────────────
#> • Model class: <xgb.Booster>
#> • Approach: copula
#> • Iterative estimation: TRUE
#> • Number of feature-wise Shapley values: 7
#> • Number of observations to explain: 144
#> • Causal ordering: {trend}, {cosyear, sinyear}, {temp, atemp, windspeed, hum}
#> • Components with confounding: {cosyear, sinyear}
#> • Computations (temporary) saved at: '/tmp/RtmppO00aE/shapr_obj_1c345f3d6eb8c6.rds'
#>
#> ── iterative computation started ──
#>
#> ── Iteration 1 ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> ℹ Using 13 of 128 coalitions, 13 new.
#>
#> ── Iteration 2 ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> ℹ Using 26 of 128 coalitions, 12 new.
#>
#> ── Iteration 3 ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> ℹ Using 36 of 128 coalitions, 10 new.
We now turn to asymmetric causal Shapley values. That is, we only use the coalitions that respects the causal ordering. Thus, the computations are faster as the number of coalitions are reduced.
explanation_asym_cau <- list()
explanation_asym_cau[["gaussian"]] <- explain(
model = model,
x_train = x_train,
x_explain = x_explain,
phi0 = phi0,
n_MC_samples = 1000,
approach = "gaussian",
asymmetric = TRUE,
causal_ordering = list(1, 2:3, 4:7),
confounding = c(FALSE, TRUE, FALSE)
)
#> Note: Feature classes extracted from the model contains NA.
#> Assuming feature classes from the data are correct.
#> Success with message:
#> max_n_coalitions is NULL or larger than or number of coalitions respecting the causal
#> ordering 20, and is therefore set to 20.
#>
#> ── Starting `shapr::explain()` at 2024-11-21 22:43:36 ──────────────────────────────────────────────────────────────────────────────────────────────────────
#> • Model class: <xgb.Booster>
#> • Approach: gaussian
#> • Iterative estimation: TRUE
#> • Number of feature-wise Shapley values: 7
#> • Number of observations to explain: 144
#> • Number of asymmetric coalitions: 20
#> • Causal ordering: {trend}, {cosyear, sinyear}, {temp, atemp, windspeed, hum}
#> • Components with confounding: {cosyear, sinyear}
#> • Computations (temporary) saved at: '/tmp/RtmppO00aE/shapr_obj_1c345f2b11d871.rds'
#>
#> ── iterative computation started ──
#>
#> ── Iteration 1 ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> ℹ Using 13 of 20 coalitions, 13 new.
# Use the copula approach
explanation_asym_cau[["copula"]] <- explain(
model = model,
x_train = x_train,
x_explain = x_explain,
phi0 = phi0,
n_MC_samples = 1000,
approach = "copula",
asymmetric = TRUE,
causal_ordering = list(1, 2:3, 4:7),
confounding = c(FALSE, TRUE, FALSE)
)
#> Note: Feature classes extracted from the model contains NA.
#> Assuming feature classes from the data are correct.
#> Success with message:
#> max_n_coalitions is NULL or larger than or number of coalitions respecting the causal
#> ordering 20, and is therefore set to 20.
#>
#> ── Starting `shapr::explain()` at 2024-11-21 22:43:38 ──────────────────────────────────────────────────────────────────────────────────────────────────────
#> • Model class: <xgb.Booster>
#> • Approach: copula
#> • Iterative estimation: TRUE
#> • Number of feature-wise Shapley values: 7
#> • Number of observations to explain: 144
#> • Number of asymmetric coalitions: 20
#> • Causal ordering: {trend}, {cosyear, sinyear}, {temp, atemp, windspeed, hum}
#> • Components with confounding: {cosyear, sinyear}
#> • Computations (temporary) saved at: '/tmp/RtmppO00aE/shapr_obj_1c345f169716e9.rds'
#>
#> ── iterative computation started ──
#>
#> ── Iteration 1 ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> ℹ Using 13 of 20 coalitions, 13 new.
#>
#> ── Iteration 2 ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> ℹ Using 14 of 20 coalitions, 1 new.
# Use the vaeac approach
explanation_asym_cau[["vaeac"]] <- explain(
model = model,
x_train = x_train,
x_explain = x_explain,
phi0 = phi0,
n_MC_samples = 1000,
approach = "vaeac",
vaeac.epochs = 20,
asymmetric = TRUE,
causal_ordering = list(1, 2:3, 4:7),
confounding = c(FALSE, TRUE, FALSE)
)
#> Note: Feature classes extracted from the model contains NA.
#> Assuming feature classes from the data are correct.
#> Success with message:
#> max_n_coalitions is NULL or larger than or number of coalitions respecting the causal
#> ordering 20, and is therefore set to 20.
#>
#> ── Starting `shapr::explain()` at 2024-11-21 22:43:42 ──────────────────────────────────────────────────────────────────────────────────────────────────────
#> • Model class: <xgb.Booster>
#> • Approach: vaeac
#> • Iterative estimation: FALSE
#> • Number of feature-wise Shapley values: 7
#> • Number of observations to explain: 144
#> • Number of asymmetric coalitions: 20
#> • Causal ordering: {trend}, {cosyear, sinyear}, {temp, atemp, windspeed, hum}
#> • Components with confounding: {cosyear, sinyear}
#> • Computations (temporary) saved at: '/tmp/RtmppO00aE/shapr_obj_1c345f3b366bf2.rds'
#>
#> ── Main computation started ──
#>
#> ℹ Using 20 of 20 coalitions.
We can look at the elapsed time. See the implementation details for an explanation.
We can then plot the beeswarm plots.
# Plot the beeswarm plots
plot_beeswarms(explanation_asym_cau, title = "Asymmetric causal Shapley values")
# Plot the Shapley values
plot_SV_several_approaches(explanation_asym_cau, index_x_explain) +
theme(legend.position = "bottom")
We can also use the other Monte Carlo-based approaches
(independence
and empirical
), too.
Here we plot the obtained Shapley values for the six explicand when
using the gaussian
approach in the different Shapley value
explanation frameworks, and we see that the different frameworks provide
different explanations. The largest difference are between whether we
use the symmetric or asymmetric version. To summarize, asymmetric
conditional/causal Shapley values focus on the root cause, marginal
Shapley values on the more direct effect, and symmetric
conditional/causal Shapley consider both for a more natural
explanation.
explanation_gaussian <- list(
symmetric_marginal = explanation_sym_marg$gaussian,
symmetric_conditional = explanation_sym_con$gaussian,
symmetric_causal = explanation_sym_cau$gaussian,
asymmetric_conditional = explanation_asym_con$gaussian,
asymmetric_causal = explanation_asym_cau$gaussian
)
plot_SV_several_approaches(explanation_gaussian, index_x_explain) +
theme(legend.position = "bottom") +
guides(fill = guide_legend(nrow = 2)) +
ggtitle("Shapley value prediction explanation (approach = 'gaussian')") +
guides(color = guide_legend(title = "Framework"))
In this section, we produce scatter plots comparing the symmetric
marginal and symmetric causal Shapley values for the temperature feature
temp
and the seasonal feature cosyear
for all
explicands. The plots shows that the marginal Shapley values almost
purely explain the predictions based on temperature, while the causal
Shapley values also give credit to season. We can change the features
and frameworks in the code below, but we chose these values to replicate
Figure 3 in Heskes et al. (2020).
# The color of the points
color <- "temp"
# The features we want to compare
feature_1 <- "cosyear"
feature_2 <- "temp"
# The Shapley value frameworks we want to compare
sv_framework_1 <- explanation_sym_marg[["gaussian"]]
sv_framework_1_str <- "Marginal SV"
sv_framework_2 <- explanation_sym_cau[["gaussian"]]
sv_framework_2_str <- "Causal SV"
# Set up the data.frame we are going to plot
sv_correlation_df <- data.frame(
color = x_explain[, color],
sv_framework_1_feature_1 = sv_framework_1$shapley_values_est[[feature_1]],
sv_framework_2_feature_1 = sv_framework_2$shapley_values_est[[feature_1]],
sv_framework_1_feature_2 = sv_framework_1$shapley_values_est[[feature_2]],
sv_framework_2_feature_2 = sv_framework_2$shapley_values_est[[feature_2]]
)
# Make the plots
scatterplot_topleft <-
ggplot(
sv_correlation_df,
aes(x = sv_framework_1_feature_2, y = sv_framework_1_feature_1, color = color)
) +
geom_point(size = 1) +
xlab(paste(sv_framework_1_str, feature_2)) +
ylab(paste(sv_framework_1_str, feature_1)) +
scale_x_continuous(limits = c(-1500, 1000), breaks = c(-1000, 0, 1000)) +
scale_y_continuous(limits = c(-500, 500), breaks = c(-500, 0, 500)) +
scale_color_gradient(low = "blue", high = "red") +
theme_minimal() +
theme(
text = element_text(size = 12),
axis.text.x = element_blank(),
axis.text.y = element_text(size = 12),
axis.ticks.x = element_blank(),
axis.title.x = element_blank()
)
scatterplot_topright <-
ggplot(
sv_correlation_df,
aes(x = sv_framework_2_feature_1, y = sv_framework_1_feature_1, color = color)
) +
geom_point(size = 1) +
scale_color_gradient(low = "blue", high = "red") +
xlab(paste(sv_framework_2_str, feature_1)) +
ylab(paste(sv_framework_1_str, feature_1)) +
scale_x_continuous(limits = c(-1500, 1000), breaks = c(-1000, 0, 1000)) +
scale_y_continuous(limits = c(-500, 500), breaks = c(-500, 0, 500)) +
theme_minimal() +
theme(
text = element_text(size = 12),
axis.title.x = element_blank(),
axis.title.y = element_blank(),
axis.text.x = element_blank(),
axis.ticks.x = element_blank(),
axis.text.y = element_blank(),
axis.ticks.y = element_blank()
)
scatterplot_bottomleft <-
ggplot(
sv_correlation_df,
aes(x = sv_framework_1_feature_2, y = sv_framework_2_feature_2, color = color)
) +
geom_point(size = 1) +
scale_color_gradient(low = "blue", high = "red") +
xlab(paste(sv_framework_1_str, feature_2)) +
ylab(paste(sv_framework_2_str, feature_2)) +
scale_x_continuous(limits = c(-1500, 1000), breaks = c(-1000, 0, 1000)) +
scale_y_continuous(limits = c(-1000, 1000), breaks = c(-500, 0, 500)) +
theme_minimal() +
theme(
text = element_text(size = 12),
axis.text.x = element_text(size = 12),
axis.text.y = element_text(size = 12)
)
scatterplot_bottomright <-
ggplot(
sv_correlation_df,
aes(x = sv_framework_2_feature_1, y = sv_framework_2_feature_2, color = color)
) +
geom_point(size = 1) +
xlab(paste(sv_framework_2_str, feature_1)) +
ylab(paste(sv_framework_2_str, feature_2)) +
scale_x_continuous(limits = c(-1500, 1000), breaks = c(-1000, 0, 1000)) +
scale_y_continuous(limits = c(-1000, 1000), breaks = c(-500, 0, 500)) +
scale_color_gradient(low = "blue", high = "red") +
theme_minimal() +
theme(
text = element_text(size = 12),
axis.text.x = element_text(size = 12),
axis.title.y = element_blank(),
axis.text.y = element_blank(),
axis.ticks.y = element_blank()
)
# Plot of the trend of the data
bike_plot_new <- ggplot(bike, aes(x = trend, y = cnt, color = get(color))) +
geom_point(size = 0.75) +
scale_color_gradient(low = "blue", high = "red") +
labs(color = color) +
xlab("Days since 1 January 2011") +
ylab("Number of bikes rented") +
theme_minimal() +
theme(legend.position = "right", legend.title = element_text(size = 10))
# Combine the plots
ggpubr::ggarrange(
bike_plot_new,
ggpubr::ggarrange(
scatterplot_topleft,
scatterplot_topright,
scatterplot_bottomleft,
scatterplot_bottomright,
legend = "none"
),
nrow = 2, heights = c(1, 2)
)
We investigate the difference between symmetric/asymmetric conditional, symmetric/asymmetric causal, and marginal Shapley values for two days: October 10 and December 3, 2012. They have more or less the same temperature of 13 and 13.27 degrees Celsius, and predicted bike counts of 6117 and 6241, respectively. The figure below is an extension of Figure 4 in Heskes et al. (2020), as they only included asymmetric conditional, symmetric causal, and marginal Shapley values.
We plot the various Shapley values for the cosyear
and
temp
features below. We obtain the same results as Heskes et al. (2020) obtained, namely, that the
marginal Shapley value explanation framework provides similar
explanation for both days. I.e., it only considers the direct effect of
temp
. The asymmetric conditional and causal Shapley values
are almost indistinguishable and put the most weight on the ‘root’ cause
cosyear
. Heskes et al. (2020)
states that the symmetric causal Shapley values provides a sensible
balance between the two extremes and gives credit to both season and
temperature, but still different explanation for the two days.
However, as we also include symmetric conditional Shapley values, we see that they are extremely similar to symmetric causal Shapley values. I.e., the conditional Shapley value explanation framework also provides a sensible balance between marginal and asymmetric Shapley values. To summarize: as concluded by Heskes et al. (2020) in their Figure 4, the asymmetric conditional/causal Shapley values focus on the root cause, marginal Shapley values on the more direct effect, and symmetric conditional/causal Shapley consider both for a more natural explanation.
# Features of interest
features <- c("cosyear", "temp")
# Get explicands with similar temperature: 2012-10-09 (October) and 2012-12-03 (December)
dates <- c("2012-10-09", "2012-12-03")
dates_idx <- sapply(dates, function(data) which(as.integer(row.names(x_explain)) == which(bike$dteday == data)))
# predict(model, x_explain)[dates_idx] + mean(y_train_nc) # predicted values for the two points
# List of the Shapley value explanations
explanations <- list(
"Sym. Mar." = explanation_sym_marg[["gaussian"]],
"Sym. Con." = explanation_sym_con[["gaussian"]],
"Sym. Cau." = explanation_sym_cau[["gaussian"]],
"Asym. Con." = explanation_asym_con[["gaussian"]],
"Asym. Cau." = explanation_asym_cau[["gaussian"]]
)
# Extract the relevant Shapley values
explanations_extracted <- data.table::rbindlist(lapply(seq_along(explanations), function(idx) {
explanations[[idx]]$shapley_values_est[
dates_idx, ..features
][, `:=`(Date = dates, type = names(explanations)[idx])]
}))
# Set type to be a ordered factor
explanations_extracted[, type := factor(type, levels = names(explanations), ordered = TRUE)]
# Convert from wide to long data table
dt_all <- data.table::melt(explanations_extracted,
id.vars = c("Date", "type"),
variable.name = "feature"
)
# Make the plot
ggplot(dt_all, aes(
x = feature, y = value, group = interaction(Date, feature),
fill = Date, label = round(value, 2)
)) +
geom_col(position = "dodge") +
theme_classic() +
ylab("Shapley value") +
facet_wrap(vars(type)) +
theme(axis.title.x = element_blank()) +
scale_fill_manual(values = c("indianred4", "ivory4")) +
theme(
legend.position.inside = c(0.75, 0.25), axis.title = element_text(size = 20),
legend.title = element_text(size = 16), legend.text = element_text(size = 14),
axis.text.x = element_text(size = 12), axis.text.y = element_text(size = 12),
strip.text.x = element_text(size = 14)
)
We can also make a similar plot using the
plot_SV_several_approaches
function in shapr
,
but then we get each explicand in a separate facet instead of a facet
for each framework.
# Here 2012-10-09 is the left facet and 2012-12-03 the right facet
plot_SV_several_approaches(explanations,
index_explicands = dates_idx,
only_these_features = features, # Can include more features.
facet_scales = "free_x",
horizontal_bars = FALSE,
axis_labels_n_dodge = 1
) + theme(legend.position = "bottom")
Furthermore, instead of doing as Heskes et al.
(2020) and only considering the features cosyear
and
temp
, we can plot all features, too, to get a more complete
overview.
We can use max_n_coalitions
to specify/reduce the number
of coalitions to use when computing the Shapley value explanation
framework. This applies to marginal, conditional, and causal Shapley
values, both the symmetric and asymmetric versions. However, recall that
the asymmetric versions already have fewer valid coalitions due to the
causal ordering.
In the example below, we demonstrate the sampling of coalitions for the asymmetric and symmetric causal Shapley value explanation frameworks. We half the number of coalitions for both versions and see that the elapsed times are approximately halved, too.
explanation_n_coal <- list()
explanation_n_coal[["sym_cau_gaussian_64"]] <- explain(
model = model,
x_train = x_train,
x_explain = x_explain,
approach = "gaussian",
phi0 = phi0,
asymmetric = FALSE,
causal_ordering = list(1, 2:3, 4:7),
confounding = c(FALSE, TRUE, FALSE),
max_n_coalitions = 64 # Instead of 128
)
#> Note: Feature classes extracted from the model contains NA.
#> Assuming feature classes from the data are correct.
#>
#> ── Starting `shapr::explain()` at 2024-11-21 22:51:20 ──────────────────────────────────────────────────────────────────────────────────────────────────────
#> • Model class: <xgb.Booster>
#> • Approach: gaussian
#> • Iterative estimation: TRUE
#> • Number of feature-wise Shapley values: 7
#> • Number of observations to explain: 144
#> • Causal ordering: {trend}, {cosyear, sinyear}, {temp, atemp, windspeed, hum}
#> • Components with confounding: {cosyear, sinyear}
#> • Computations (temporary) saved at: '/tmp/RtmppO00aE/shapr_obj_1c345f2da648d9.rds'
#>
#> ── iterative computation started ──
#>
#> ── Iteration 1 ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> ℹ Using 13 of 128 coalitions, 13 new.
#>
#> ── Iteration 2 ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> ℹ Using 26 of 128 coalitions, 12 new.
#>
#> ── Iteration 3 ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#> ℹ Using 36 of 128 coalitions, 10 new.
explanation_n_coal[["asym_cau_gaussian_10"]] <- explain(
model = model,
x_train = x_train,
x_explain = x_explain,
approach = "gaussian",
phi0 = phi0,
asymmetric = TRUE,
causal_ordering = list(1, 2:3, 4:7),
confounding = c(FALSE, TRUE, FALSE),
verbose = c("basic", "convergence", "shapley"),
max_n_coalitions = 10, # Instead of 20
iterative = FALSE # Due to small number of coalitions
)
#> Note: Feature classes extracted from the model contains NA.
#> Assuming feature classes from the data are correct.
#>
#> ── Starting `shapr::explain()` at 2024-11-21 22:51:31 ──────────────────────────────────────────────────────────────────────────────────────────────────────
#> • Model class: <xgb.Booster>
#> • Approach: gaussian
#> • Iterative estimation: FALSE
#> • Number of feature-wise Shapley values: 7
#> • Number of observations to explain: 144
#> • Number of asymmetric coalitions: 20
#> • Causal ordering: {trend}, {cosyear, sinyear}, {temp, atemp, windspeed, hum}
#> • Components with confounding: {cosyear, sinyear}
#> • Computations (temporary) saved at: '/tmp/RtmppO00aE/shapr_obj_1c345f5c86c514.rds'
#>
#> ── Main computation started ──
#>
#> ℹ Using 10 of 10 coalitions.
#>
#> ── Convergence info
#> ✔ Converged after 10 coalitions:
#> Maximum number of iterations reached!
#> Maximum number of coalitions reached!
#>
#> ── Final estimated Shapley values (sd)
#> none trend cosyear sinyear temp atemp windspeed hum
#> <char> <char> <char> <char> <char> <char> <char> <char>
#> 1: 0.00 (0.00) -2181.910 (374.04) -825.541 (352.22) -236.730 (257.69) -33.813 ( 53.36) -0.059 ( 65.63) 116.495 ( 58.93) 10.180 ( 92.72)
#> 2: 0.00 (0.00) -2174.357 (371.76) -846.615 (359.93) -187.083 (274.61) -44.966 ( 55.88) 34.569 ( 43.16) 13.436 ( 22.08) 185.698 ( 89.51)
#> 3: 0.00 (0.00) -2088.959 (360.14) -793.628 (341.68) -186.335 (247.79) -104.809 ( 41.60) -18.460 ( 53.65) 244.081 ( 54.69) -122.150 ( 58.72)
#> 4: 0.00 (0.00) -2103.364 (368.62) -798.135 (356.43) -110.331 (268.86) 169.736 (102.15) 45.240 ( 56.60) -182.944 ( 57.89) -207.757 (103.37)
#> 5: 0.00 (0.00) -2003.877 (349.11) -723.936 (323.40) -231.863 (226.28) 36.505 ( 30.76) 4.713 ( 45.20) 203.889 ( 37.15) -30.464 ( 60.22)
#> ---
#> 140: 0.00 (0.00) 1575.954 (585.55) -1014.078 (542.93) 236.336 (357.62) -68.170 (206.72) 16.388 (172.71) 362.193 (170.75) 627.943 (272.12)
#> 141: 0.00 (0.00) 1588.686 (607.20) -1057.223 (537.25) 33.370 (256.33) 1.919 ( 28.74) 7.102 ( 42.27) 216.846 ( 28.79) -71.698 ( 50.76)
#> 142: 0.00 (0.00) 1466.745 (593.37) -1109.151 (522.54) -96.687 (257.10) -44.555 ( 72.30) 129.756 ( 53.01) 80.036 ( 24.16) 272.476 (108.15)
#> 143: 0.00 (0.00) 1003.943 (616.41) -1780.473 (602.42) -101.586 (368.10) 19.062 ( 60.65) -3.841 ( 67.14) 48.680 ( 22.53) -236.844 ( 96.28)
#> 144: 0.00 (0.00) 711.139 (724.53) -2635.898 (777.15) -178.609 (570.02) 36.623 (147.84) -66.292 (118.13) -469.159 ( 81.16) 562.362 (234.12)
# Look at the times
explanation_n_coal[["sym_cau_gaussian_all_128"]] <- explanation_sym_cau$gaussian
explanation_n_coal[["asym_cau_gaussian_all_20"]] <- explanation_asym_cau$gaussian
explanation_n_coal <- explanation_n_coal[c(1, 3, 2, 4)]
print_time(explanation_n_coal)
#> sym_cau_gaussian_64 sym_cau_gaussian_all_128 asym_cau_gaussian_10 asym_cau_gaussian_all_20
#> [1,] 11.28316 31.93906 1.905475 2.468166
We can then plot the beeswarm plots and the Shapley values for the six selected explicands. We see that there are only minuscule differences between the Shapley values we obtain when we use all the coalitions and those we obtain when we use half of the valid coalitions.
In this section, we demonstrate that we can compute marginal,
asymmetric conditional, and symmetric/asymmetric Shapley values for
groups of features, too. For group Shapley values, we need to specify
the causal ordering on the group level and feature level. We demonstrate
with the gaussian
approach, but other approaches are
applicable, too.
In the pairs plot above (and below), we see that it can be natural to
group the features temp
and atemp
due to their
(conceptual) similarity and high correlation.
We set up the groups and update the causal ordering to be on the group level.
group_list <- list(
trend = "trend",
cosyear = "cosyear",
sinyear = "sinyear",
temp_group = c("temp", "atemp"),
windspeed = "windspeed",
hum = "hum"
)
causal_ordering_group <-
list("trend", c("cosyear", "sinyear"), c("temp_group", "windspeed", "hum"))
confounding <- c(FALSE, TRUE, FALSE)
We can then compute the (group) Shapley values using the different Shapley value frameworks.
explanation_group_gaussian <- list()
explanation_group_gaussian[["symmetric_marginal"]] <-
explain(
model = model,
x_train = x_train,
x_explain = x_explain,
approach = "gaussian",
phi0 = phi0,
asymmetric = FALSE,
causal_ordering = list(seq(length(group_list))), # or `NULL`
confounding = TRUE,
n_MC_samples = 1000,
group = group_list,
iterative = FALSE
)
#> Note: Feature classes extracted from the model contains NA.
#> Assuming feature classes from the data are correct.
#> Success with message:
#> max_n_coalitions is NULL or larger than or 2^n_groups = 64,
#> and is therefore set to 2^n_groups = 64.
#>
#> ── Starting `shapr::explain()` at 2024-11-21 22:51:36 ──────────────────────────────────────────────────────────────────────────────────────────────────────
#> • Model class: <xgb.Booster>
#> • Approach: gaussian
#> • Iterative estimation: FALSE
#> • Number of group-wise Shapley values: 6
#> • Number of observations to explain: 144
#> • Causal ordering: {trend, cosyear, sinyear, temp_group, windspeed, hum}
#> • Components with confounding: {trend, cosyear, sinyear, temp_group, windspeed, hum}
#> • Computations (temporary) saved at: '/tmp/RtmppO00aE/shapr_obj_1c345f3eb9f3eb.rds'
#>
#> ── Main computation started ──
#>
#> ℹ Using 64 of 64 coalitions.
explanation_group_gaussian[["symmetric_conditional"]] <-
explain(
model = model,
x_train = x_train,
x_explain = x_explain,
approach = "gaussian",
phi0 = phi0,
asymmetric = FALSE,
causal_ordering = list(seq(length(group_list))), # or `NULL`
confounding = NULL,
n_MC_samples = 1000,
group = group_list,
iterative = FALSE
)
#> Note: Feature classes extracted from the model contains NA.
#> Assuming feature classes from the data are correct.
#> Success with message:
#> max_n_coalitions is NULL or larger than or 2^n_groups = 64,
#> and is therefore set to 2^n_groups = 64.
#>
#> ── Starting `shapr::explain()` at 2024-11-21 22:51:46 ──────────────────────────────────────────────────────────────────────────────────────────────────────
#> • Model class: <xgb.Booster>
#> • Approach: gaussian
#> • Iterative estimation: FALSE
#> • Number of group-wise Shapley values: 6
#> • Number of observations to explain: 144
#> • Computations (temporary) saved at: '/tmp/RtmppO00aE/shapr_obj_1c345f3245eb2e.rds'
#>
#> ── Main computation started ──
#>
#> ℹ Using 64 of 64 coalitions.
explanation_group_gaussian[["asymmetric_conditional"]] <-
explain(
model = model,
x_train = x_train,
x_explain = x_explain,
approach = "gaussian",
phi0 = phi0,
asymmetric = TRUE,
causal_ordering = causal_ordering_group,
confounding = NULL,
n_MC_samples = 1000,
group = group_list,
iterative = FALSE
)
#> Note: Feature classes extracted from the model contains NA.
#> Assuming feature classes from the data are correct.
#> Success with message:
#> max_n_coalitions is NULL or larger than or number of coalitions respecting the causal
#> ordering 12, and is therefore set to 12.
#>
#> ── Starting `shapr::explain()` at 2024-11-21 22:51:51 ──────────────────────────────────────────────────────────────────────────────────────────────────────
#> • Model class: <xgb.Booster>
#> • Approach: gaussian
#> • Iterative estimation: FALSE
#> • Number of group-wise Shapley values: 6
#> • Number of observations to explain: 144
#> • Number of asymmetric coalitions: 12
#> • Causal ordering: {trend}, {cosyear, sinyear}, {temp_group, windspeed, hum}
#> • Computations (temporary) saved at: '/tmp/RtmppO00aE/shapr_obj_1c345f3a65cf0.rds'
#>
#> ── Main computation started ──
#>
#> ℹ Using 12 of 12 coalitions.
explanation_group_gaussian[["symmetric_causal"]] <-
explain(
model = model,
x_train = x_train,
x_explain = x_explain,
approach = "gaussian",
phi0 = phi0,
asymmetric = FALSE,
causal_ordering = causal_ordering_group,
confounding = confounding,
n_MC_samples = 1000,
group = group_list,
iterative = FALSE
)
#> Note: Feature classes extracted from the model contains NA.
#> Assuming feature classes from the data are correct.
#> Success with message:
#> max_n_coalitions is NULL or larger than or 2^n_groups = 64,
#> and is therefore set to 2^n_groups = 64.
#>
#> ── Starting `shapr::explain()` at 2024-11-21 22:51:52 ──────────────────────────────────────────────────────────────────────────────────────────────────────
#> • Model class: <xgb.Booster>
#> • Approach: gaussian
#> • Iterative estimation: FALSE
#> • Number of group-wise Shapley values: 6
#> • Number of observations to explain: 144
#> • Causal ordering: {trend}, {cosyear, sinyear}, {temp_group, windspeed, hum}
#> • Components with confounding: {cosyear, sinyear}
#> • Computations (temporary) saved at: '/tmp/RtmppO00aE/shapr_obj_1c345f6ff634f4.rds'
#>
#> ── Main computation started ──
#>
#> ℹ Using 64 of 64 coalitions.
explanation_group_gaussian[["asymmetric_causal"]] <-
explain(
model = model,
x_train = x_train,
x_explain = x_explain,
approach = "gaussian",
phi0 = phi0,
asymmetric = TRUE,
causal_ordering = causal_ordering_group,
confounding = confounding,
n_MC_samples = 1000,
group = group_list,
iterative = FALSE
)
#> Note: Feature classes extracted from the model contains NA.
#> Assuming feature classes from the data are correct.
#> Success with message:
#> max_n_coalitions is NULL or larger than or number of coalitions respecting the causal
#> ordering 12, and is therefore set to 12.
#>
#> ── Starting `shapr::explain()` at 2024-11-21 22:52:07 ──────────────────────────────────────────────────────────────────────────────────────────────────────
#> • Model class: <xgb.Booster>
#> • Approach: gaussian
#> • Iterative estimation: FALSE
#> • Number of group-wise Shapley values: 6
#> • Number of observations to explain: 144
#> • Number of asymmetric coalitions: 12
#> • Causal ordering: {trend}, {cosyear, sinyear}, {temp_group, windspeed, hum}
#> • Components with confounding: {cosyear, sinyear}
#> • Computations (temporary) saved at: '/tmp/RtmppO00aE/shapr_obj_1c345f32c28e3e.rds'
#>
#> ── Main computation started ──
#>
#> ℹ Using 12 of 12 coalitions.
# Look at the elapsed times (symmetric takes the longest time)
print_time(explanation_group_gaussian)
#> symmetric_marginal symmetric_conditional asymmetric_conditional symmetric_causal asymmetric_causal
#> [1,] 10.38695 4.580573 0.911653 15.69702 1.903805
We can then make the beeswarm plots and Shapley values plots for the
six selected explicands. For the beeswarm plots, we set
include_group_feature_means = TRUE
to make the plots. This
means that the plot function use the mean of the temp
and
atemp
features as the feature value. This only makes sense
due to the high correlation between the two features.
The main difference between the feature-wise and group-wise Shapley
values is that we now see a much wider spread in the Shapley values for
temp_group
than we did for temp
and
atemp
. For example, for the symmetric causal framework, we
saw above that the temp
and atemp
obtained
Shapley values between (around) \(-500\) to \(500\), while the grouped version
temp_group
obtains Shapley values between \(-1000\) to \(1000\)
plot_beeswarms(explanation_group_gaussian,
title = "Group Shapley values (gaussian)",
include_group_feature_means = TRUE
)
The shapr
package is built to estimate conditional
Shapley values, thus, it parallelize over the coalitions. This makes
perfect sense for said framework as each batch of coalitions are
independent of other batches, which means that it is easy to
parallelize. Furthermore, by using many batches we drastically reduce
the memory usage as shapr
does not need to store the Monte
Carlo samples for all coalitions.
This setup is not optimal for the causal Shapley value framework as the chains of sampling steps for two coalition \(\mathcal{S}\) and \(\mathcal{S}^*\) can contain many of the same steps. Ideally, each unique sampling step should only be modeled once to save computation time, but, some of the sampling steps will occur in many of the chains. Thus, we would then have to store the Monte Carlo samples for all coalitions where this sampling step is included, and we can therefor run into memory consumption problems. Thus, in the current implementation, we treat each coalition \(\mathcal{S}\) independent and remodel the needed sampling steps for each coalition.
Furthermore, in the conditional Shapley value framework, we have that
\(\bar{\mathcal{S}} = \mathcal{M} \backslash
\mathcal{S}\), thus shapr
will by default generate
Monte Carlo samples for all features not in \(\mathcal{S}\). For the causal Shapley value
framework, this is not the case, i.e., \(\bar{\mathcal{S}} \neq \mathcal{M} \backslash
\mathcal{S}\) in general. To reuse the code, we generate Monte
Carlo samples for all features not in \(\mathcal{S}\), but only keep the samples
for the features in \(\bar{\mathcal{S}}\). To speed up
shapr
further, one could rewrite all the approaches to
support that \(\bar{\mathcal{S}}\) is
not the complement of \(\mathcal{S}\).
In the code below, we see the unique coalitions/set of features to
condition on to generate the Monte Carlo samples for all coalitions and
the number of times that set of conditional features is needed in the
symmetric causal Shapley value framework for the set up above. We see
that most of the conditional distributions will now be remodeled eights
times. For the gaussian
approach, which is very fast to
estimate the conditional distributions, this does not have a major
impact on the time. However, for, e.g., the ctree
approach
which is much slower, this will take a significant amount of extra time.
The vaeac
approach trains only on these relevant
coalitions.
S_causal_steps <- explanation_sym_cau$gaussian$internal$iter_list[[1]]$S_causal_steps
S_causal_unlist <- do.call(c, unlist(S_causal_steps, recursive = FALSE))
S_causal_steps_freq <- S_causal_unlist[grepl("\\.S(?!bar)", names(S_causal_unlist), perl = TRUE)]
S_causal_steps_freq <- S_causal_steps_freq[!sapply(S_causal_steps_freq, is.null)] # Remove NULLs
S_causal_steps_freq <- S_causal_steps_freq[sapply(S_causal_steps_freq, length) > 0] # Remove extra integer(0)
table(sapply(S_causal_steps_freq, paste0, collapse = ","))
#>
#> 1 1,2,3 1,2,3,4 1,2,3,4,5 1,2,3,4,5,6 1,2,3,4,5,7 1,2,3,4,6 1,2,3,4,6,7 1,2,3,4,7 1,2,3,5 1,2,3,5,6 1,2,3,5,6,7 1,2,3,5,7
#> 95 7 8 8 8 8 8 8 8 8 8 8 8
#> 1,2,3,6 1,2,3,6,7 1,2,3,7
#> 8 8 8
The independence
, empirical
,
ctree
, and categorical
approaches produce
weighted Monte Carlo samples. That means that they do not necessarily
generate n_MC_samples
. To ensure n_MC_samples
,
we sample n_MC_samples
samples using weighted sampling with
replacements where the weights are the weights returned by the
approaches.
The marginal Shapley value explanation framework can be extended to
support modeling the marginal distributions using the
copula
and vaeac
approaches as both of these
methods support unconditional sampling.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.