The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Semiparametric model

library(serosv)

Penalized splines

Proposed model

Penalized splines

A general model relating the prevalence to age can be written as a GLM

\[ g(P(Y_i = 1| a _i)) = g(\pi(a_i)) = \eta(a_i) \]

The linear predictor can be estimated semi-parametrically using penalized spline with truncated power basis functions of degree \(p\) and fixed knots \(\kappa_1,..., \kappa_k\) as followed

\[ \eta(a_i) = \beta_0 + \beta_1a_i + ... + \beta_p a_i^p + \Sigma_{k=1}^ku_k(a_i - \kappa_k)^p_+ \]

In matrix notation, the mean structure model for \(\eta(a_i)\) becomes

\[ \eta = X\beta + Zu \]

Where \(\eta = [\eta(a_i) ... \eta(a_N) ]^T\), \(\beta = [\beta_0 \beta_1 .... \beta_p]^T\), and \(u = [u_1 u_2 ... u_k]^T\) are the regression with corresponding design matrices

\[ X = \begin{bmatrix} 1 & a_1 & a_1^2 & ... & a_1^p \\ 1 & a_2 & a_2^2 & ... & a_2^p \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & a_N & a_N^2 & ... & a_N^p \end{bmatrix}, Z = \begin{bmatrix} (a_1 - \kappa_1 )_+^p & (a_1 - \kappa_2 )_+^p & \dots & (a_1 - \kappa_k)_+^p \\ (a_2 - \kappa_1 )_+^p & (a_2 - \kappa_2 )_+^p & \dots & (a_2 - \kappa_k)_+^p \\ \vdots & \vdots & \dots & \vdots \\ (a_N - \kappa_1 )_+^p & (a_N - \kappa_2 )_+^p & \dots & (a_N - \kappa_k)_+^p \end{bmatrix} \]

FOI can then be derived as

\[ \hat{\lambda}(a_i) = [\hat{\beta_1} , 2\hat{\beta_2}a_i, ..., p \hat{\beta} a_i ^{p-1} + \Sigma^k_{k=1} p \hat{u}_k(a_i - \kappa_k)^{p-1}_+] \delta(\hat{\eta}(a_i)) \]


Penalized likelihood framework

Refer to Chapter 8.2.1

Proposed approach

A first approach to fit the model is by maximizing the following penalized likelihood

\[\begin{equation} \phi^{-1}[y^T(X\beta + Zu ) - 1^Tc(X\beta + Zu )] - \frac{1}{2}\lambda^2 \begin{bmatrix} \beta \\u \end{bmatrix}^T D\begin{bmatrix} \beta \\u \end{bmatrix} \tag{1} \end{equation}\]

Where:

Fitting data

To fit the data using the penalized likelihood framework, specify framework = "pl"

Basis function can be defined via the s parameter, some values for s includes:

For more options, refer to the mgcv documentation (Wood 2017)

data <- parvob19_be_2001_2003
pl <- penalized_spline_model(data$age, status = data$seropositive, s = "tp", framework = "pl") 
pl$info
#> 
#> Family: binomial 
#> Link function: logit 
#> 
#> Formula:
#> spos ~ s(age, bs = s, sp = sp)
#> 
#> Estimated degrees of freedom:
#> 6.16  total = 7.16 
#> 
#> UBRE score: 0.1206458
plot(pl)


Generalized Linear Mixture Model framework

Refer to Chapter 8.2.2

Proposed approach

Looking back at (1), a constraint for \(u\) would be \(\Sigma_ku_k^2 < C\) for some positive value \(C\)

This is equivalent to choosing \((\beta, u)\) to maximise (1) with \(D = diag(0, 1)\) where \(0\) denotes zero vector length \(p+1\) and 1 denotes the unit vector of length \(K\)

For a fixed value for \(\lambda\) this is equivalent to fitting the following generalized linear mixed model Ngo and Wand (2004)

\[ f(y|u) = exp\{ \phi^{-1} [y^T(X\beta + Zu) - c(X\beta + Zu)] + 1^Tc(y)\},\\ u \sim N(0, G) \]

Thus \(Z\) is penalized by assuming the corresponding coefficients \(u\) are random effect with \(u \sim N(0, \sigma^2_uI)\).

Fitting data

To fit the data using the penalized likelihood framework, specify framework = "glmm"

data <- parvob19_be_2001_2003
glmm <- penalized_spline_model(data$age, status = data$seropositive, s = "tp", framework = "glmm") 
#> 
#>  Maximum number of PQL iterations:  20
#> iteration 1
#> iteration 2
#> iteration 3
#> iteration 4
glmm$info$gam
#> 
#> Family: binomial 
#> Link function: logit 
#> 
#> Formula:
#> spos ~ s(age, bs = s, sp = sp)
#> 
#> Estimated degrees of freedom:
#> 6.45  total = 7.45
plot(glmm)

Eilers, Paul H. C., and Brian D. Marx. 1996. “Flexible Smoothing with b-Splines and Penalties.” Statistical Science 11 (2). https://doi.org/10.1214/ss/1038425655.
Green, P. J., and Bernard. W. Silverman. 1993. Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach. Chapman; Hall/CRC. https://doi.org/10.1201/b15710.
Ngo, Long, and Matthew P. Wand. 2004. “Smoothing with Mixed Model Software.” Journal of Statistical Software 9 (1). https://doi.org/10.18637/jss.v009.i01.
Ruppert, David, M. P. Wand, and R. J. Carroll. 2003. Semiparametric Regression. Cambridge University Press. https://doi.org/10.1017/cbo9780511755453.
Wahba, Grace. 1978. “Improper Priors, Spline Smoothing and the Problem of Guarding Against Model Errors in Regression.” Journal of the Royal Statistical Society Series B: Statistical Methodology 40 (3): 364–72. https://doi.org/10.1111/j.2517-6161.1978.tb01050.x.
Wand, M. P. 2003. “Smoothing and Mixed Models.” Computational Statistics 18 (2): 223–49. https://doi.org/10.1007/s001800300142.
Wood, Simon N. 2017. Generalized Additive Models: An Introduction with r. Chapman; Hall/CRC. https://doi.org/10.1201/9781315370279.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.