The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
We introduced parameters plot_constant and
x_axis to the visualisation functions of the package. These
enable the option to plot constant FoI estimates and their corresponding
r-hat values, avoiding ambiguity in the specification of the x-axis by
means of x_axis = "time" or
x_axis = "age".
foi_models to show the prior
specification options available in the package.foi_modelsseroprevalence_ and seropositive_
for seroprev_probability_ for prob__modelREADMElintr v3.2.0 new suggestionsHmisc dependency.Matrix package for expmdonttest to examples taking too long to runsf_normal() and
sf_uniform().simdata_* datasets from the package and
replaced them with code-based simulation in vignettes.fit_seromodel() function (#213).build_stan_data and related functions (#232).foi_sim_constant <- rep(0.02, 50)
serodata_constant <- generate_sim_data(
sim_data = data.frame(
age = seq(1, 50),
tsur = 2050),
foi = foi_sim_constant,
sample_size_by_age = 5
)
To generate grouped serosurveys the function
group_sim_data can be used:
serodata_constant <- group_sim_data(serodata_constant, step = 5)
Simplifies fit_seromodel output
fit_seromodel was a list: seromodel_object <- list(
fit = fit,
seromodel_fit = seromodel_fit,
serodata = serodata,
serodata = serodata,
stan_data = stan_data,
...
)
stan_fit object as obtained from
rstan::sampling.
Because of this, some plotting functionalities now require
serodata as an input.Initial prior distribution parameters foi_location
and foi_scale can be specified explicitly in
fit_seromodel:
seromodel <- fit_seromodel(
serodata,
foi_model = "tv_normal",
foi_location = 0,
foi_scale = 1
)
Depending on the selected model foi_model, the meaning
of the parameters change. For the tv_normal_log model these
parameters must be in logarithmic scale; the recommended usage is:
seromodel <- fit_seromodel(
serodata,
foi_model = "tv_normal_log",
foi_location = -6,
foi_scale = 4
)
Chunks structure specification is now possible
data(chagas2012)
serodata <- prepare_serodata(chagas2012)
seromodel <- fit_seromodel(serodata, foi_model = "tv_normal")
seromodel <- fit_seromodel(serodata, foi_model = "tv_normal", chunk_size = 10)
or explicitly:
chunks <- rep(c(1, 2, 3, 4, 5), c(10, 10, 15, 15, max(serodata$age_mean_f)-50))
seromodel <- fit_seromodel(serodata, foi_model = "tv_normal", chunks = chunks)
run_seromodel. Initially
this function was intended to be a handler for
fit_seromodel for cases when the user may need to implement
the same model to multiple independent serosurveys; now we plan to
showcase examples of this using the current functionalities of the
package (to be added in future versions to the vignettes).plot_seroprev allows for data binning (age group
manipulation) by means of parameters bin_data=TRUE and
bin_step.ymin and ymax
aesthetics plotting functions (with the exception of
plot_rhats).veev2012 datasetRemove large files from git history (see #77).
Added input validation for the following functions:
prepare_serodatagenerate_sim_dataget_age_groupfit_seromodelextract_seromodel_summaryplot_seroprevplot_seroprev_fittedplot_foiplot_seromodelUnit testing:
dplyr::near to test models statistical
validityUpdate package template in accordance to {packagetemplate}
This release of serofoi, includes the following:
Overall, this release introduces essential package functionality, comprehensive documentation, various FoI models, and a coverage test, enabling users to analyse seroprevalence data and calculate the Force-of-infection.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.