The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
We introduced parameters plot_constant
and
x_axis
to the visualisation functions of the package. These
enable the option to plot constant FoI estimates and their corresponding
r-hat values, avoiding ambiguity in the specification of the x-axis by
means of x_axis = "time"
or
x_axis = "age"
.
foi_models
to show the prior
specification options available in the package.foi_models
seroprevalence_
and seropositive_
for seroprev_
probability_
for prob_
_model
README
lintr v3.2.0
new suggestionsHmisc
dependency.Matrix
package for expm
donttest
to examples taking too long to runsf_normal()
and
sf_uniform()
.simdata_*
datasets from the package and
replaced them with code-based simulation in vignettes.fit_seromodel()
function (#213).build_stan_data
and related functions (#232).foi_sim_constant <- rep(0.02, 50)
serodata_constant <- generate_sim_data(
sim_data = data.frame(
age = seq(1, 50),
tsur = 2050),
foi = foi_sim_constant,
sample_size_by_age = 5
)
To generate grouped serosurveys the function
group_sim_data
can be used:
serodata_constant <- group_sim_data(serodata_constant, step = 5)
Simplifies fit_seromodel
output
fit_seromodel
was a list: seromodel_object <- list(
fit = fit,
seromodel_fit = seromodel_fit,
serodata = serodata,
serodata = serodata,
stan_data = stan_data,
...
)
stan_fit
object as obtained from
rstan::sampling
.
Because of this, some plotting functionalities now require
serodata
as an input.Initial prior distribution parameters foi_location
and foi_scale
can be specified explicitly in
fit_seromodel
:
seromodel <- fit_seromodel(
serodata,
foi_model = "tv_normal",
foi_location = 0,
foi_scale = 1
)
Depending on the selected model foi_model
, the meaning
of the parameters change. For the tv_normal_log
model these
parameters must be in logarithmic scale; the recommended usage is:
seromodel <- fit_seromodel(
serodata,
foi_model = "tv_normal_log",
foi_location = -6,
foi_scale = 4
)
Chunks structure specification is now possible
data(chagas2012)
serodata <- prepare_serodata(chagas2012)
seromodel <- fit_seromodel(serodata, foi_model = "tv_normal")
seromodel <- fit_seromodel(serodata, foi_model = "tv_normal", chunk_size = 10)
or explicitly:
chunks <- rep(c(1, 2, 3, 4, 5), c(10, 10, 15, 15, max(serodata$age_mean_f)-50))
seromodel <- fit_seromodel(serodata, foi_model = "tv_normal", chunks = chunks)
run_seromodel
. Initially
this function was intended to be a handler for
fit_seromodel
for cases when the user may need to implement
the same model to multiple independent serosurveys; now we plan to
showcase examples of this using the current functionalities of the
package (to be added in future versions to the vignettes).plot_seroprev
allows for data binning (age group
manipulation) by means of parameters bin_data=TRUE
and
bin_step
.ymin
and ymax
aesthetics plotting functions (with the exception of
plot_rhats
).veev2012
datasetRemove large files from git history (see #77).
Added input validation for the following functions:
prepare_serodata
generate_sim_data
get_age_group
fit_seromodel
extract_seromodel_summary
plot_seroprev
plot_seroprev_fitted
plot_foi
plot_seromodel
Unit testing:
dplyr::near
to test models statistical
validityUpdate package template in accordance to {packagetemplate}
This release of serofoi, includes the following:
Overall, this release introduces essential package functionality, comprehensive documentation, various FoI models, and a coverage test, enabling users to analyse seroprevalence data and calculate the Force-of-infection.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.