The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
In the following vignette, we will walk through a basic example of
how to conduct a sensitivity analysis for external validity using
senseweight
. We will use a subset of the JTPA data.
# Summarize sites
jtpa_women |>
dplyr::group_by(site) |>
dplyr::summarize(
length(prevearn),
dplyr::across(
c(prevearn, age, married, hrwage, black, hispanic, hsorged, yrs_educ),
mean
)
)
#> # A tibble: 16 × 10
#> site `length(prevearn)` prevearn age married hrwage black hispanic
#> <chr> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 CC 524 1855. 32.1 0.219 479. 0.101 0.693
#> 2 CI 190 2250. 33.5 0.253 458. 0.0684 0.0105
#> 3 CV 788 2192. 33.6 0.278 455. 0.173 0.00635
#> 4 HF 234 1997. 31.6 0.184 455. 0.432 0.0342
#> 5 IN 1392 3172. 34.9 0.193 466. 0.243 0.0194
#> 6 JC 81 2564. 30.6 0.136 531. 0.642 0.247
#> 7 JK 353 1928. 30.0 0.113 453. 0.912 0
#> 8 LC 485 3039. 33.9 0.258 464. 0.0165 0.165
#> 9 MD 177 2915. 34.6 0.181 480. 0.367 0
#> 10 MN 179 2215. 37.6 0.352 454. 0.00559 0.0782
#> 11 MT 38 1680. 33.8 0.395 474. 0 0.0526
#> 12 NE 636 2161. 31.7 0.0975 477. 0.511 0.0377
#> 13 OH 74 2568. 34.6 0.324 486. 0.0135 0
#> 14 OK 87 2320. 37.3 0.126 586. 0.759 0.0805
#> 15 PR 463 1783. 32.8 0.0842 506. 0.268 0.378
#> 16 SM 401 2997. 32.2 0.284 429. 0.0200 0.00249
#> # ℹ 2 more variables: hsorged <dbl>, yrs_educ <dbl>
Assume researchers are interested in generalizing the results from the site of Omaha, Nebraska to the other 15 experimental sites:
site_name <- "NE"
df_site <- jtpa_women[which(jtpa_women$site == site_name), ]
df_else <- jtpa_women[which(jtpa_women$site != site_name), ]
# Estimate unweighted estimator:
model_dim <- estimatr::lm_robust(Y ~ T, data = df_site)
PATE <- coef(lm(Y ~ T, data = df_else))[2]
DiM <- coef(model_dim)[2]
# Generate weights using observed covariates:
df_all <- jtpa_women
df_all$S <- ifelse(jtpa_women$site == "NE", 1, 0)
model_ps <- WeightIt::weightit(
(1 - S) ~ . - site - T - Y,
data = df_all, method = "ebal", estimand = "ATT"
)
weights <- model_ps$weights[df_all$S == 1]
# Estimate IPW model:
model_ipw <- estimatr::lm_robust(Y ~ T, data = df_site, weights = weights)
ipw <- coef(model_ipw)[2]
# Estimate bound for var(tau):
m <- sqrt(stats::var(df_site$Y[df_site$T == 1]) / stats::var(df_site$Y[df_site$T == 0]))
# Since m > 1:
vartau <- stats::var(df_site$Y[df_site$T == 1]) - stats::var(df_site$Y[df_site$T == 0])
We can generate the sensitivity summary measures using the
summarize_sensitivity
function:
summarize_sensitivity(
weights = weights,
Y = df_site$Y,
Z = df_site$T,
sigma2 = vartau,
estimand = "PATE"
)
#> Unweighted Unweighted_SE Estimate SE RV sigma_tau_bound cor_w
#> Z 1107.35 982.65 1356.66 1417.3 0.36 2897.9 0.07
The summarize_sensitivity
function defaults to
evaluating the robustness value at q=1
, indicating a
robustness value, relative to a bias equal to the point estimate.
Researchers can specify different values for q
in the
function. In the generalization setting, researchers can modify the
sigma2
bound and posit their own values for a plausible
bound (given substantive justification). With no specification,
sigma2
will be automatically calculated to be bound by
var(Y(1)) + var(Y(0))
.
# Select weighting variables:
weighting_vars = names(df_all)[which(!names(df_all) %in% c("site", "S", "Y", "T"))]
# Run bechmarking:
df_benchmark <- run_benchmarking(
weighting_vars = weighting_vars,
data = df_all[, -1],
treatment = "T", outcome = "Y", selection = "S",
estimate = ipw,
RV = RV, sigma2 = vartau,
estimand = "PATE"
)
print(df_benchmark)
#> variable R2_benchmark rho_benchmark bias MRCS k_sigma_min k_rho_min
#> 1 prevearn 0.04 -0.22 -115.00 -11.80 9.99 -2.92
#> 2 age 0.06 -0.09 -55.45 -24.47 6.91 -7.37
#> 3 married 0.11 0.00 -2.52 -539.33 3.82 -224.19
#> 4 hrwage 0.05 0.02 13.51 100.40 8.32 27.40
#> 5 black 0.20 -0.03 -33.11 -40.97 2.03 -24.72
#> 6 hispanic 0.14 -0.06 -62.63 -21.66 3.01 -10.30
#> 7 hsorged 0.12 0.10 95.06 14.27 3.51 6.22
#> 8 yrs_educ 0.00 -0.07 -5.23 -259.49 408.90 -9.85
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.