The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Argument | Description |
---|---|
object |
A model fitted by lavaan . |
level |
Confidence level for the confidence intervals. For example,
.95 gives 95% confidence intervals. |
type |
Type of standardized coefficients. Same as in
lavaan::standardizedSolution() , such as
"std.all" or "std.lv" . |
boot_delta_ratio |
Whether to calculate how wide the bootstrap confidence interval is compared to the usual confidence interval (delta method). Useful for comparing both methods. |
boot_ci_type |
Method for forming bootstrap confidence intervals.
"perc" gives percentile intervals; "bc" and
"bca.simple" give bias-corrected intervals. |
save_boot_est_std |
Whether to save the bootstrap estimates of standardized coefficients
in the result. Saved in the attribute boot_est_std if
TRUE . |
boot_pvalue |
Whether to compute asymmetric p-values based on bootstrap results. Only available when percentile confidence intervals are used. |
boot_pvalue_min_size |
Minimum number of valid bootstrap samples needed to compute
asymmetric p-values. If fewer samples are available,
p-values will not be computed and will be shown as
NA . |
... |
Additional arguments passed to
lavaan::standardizedSolution() . |
# (should use ≥2000 in real studies)
fit <- sem(mod, data = dat, se = "boot", bootstrap = 500)
#> Warning: lavaan->lav_model_nvcov_bootstrap():
#> 2 bootstrap runs failed or did not converge.
std_boot <- standardizedSolution_boot(fit)
#> Warning in standardizedSolution_boot(fit): The number of bootstrap samples
#> (498) is less than 'boot_pvalue_min_size' (1000). Bootstrap p-values are not
#> computed.
print(std_boot)
#>
#> Bootstrapping:
#>
#> Valid Bootstrap Samples: 498
#> Level of Confidence: 95.0%
#> CI Type: Percentile
#> Standardization Type: std.all
#>
#> Parameter Estimates Settings:
#>
#> Standard errors: Bootstrap
#> Number of requested bootstrap draws: 500
#> Number of successful bootstrap draws: 498
#>
#> Regressions:
#> Std SE p CI.Lo CI.Up bSE bCI.Lo bCI.Up
#> m ~
#> x (a) 0.027 0.034 0.425 -0.040 0.095 0.035 -0.047 0.088
#> y ~
#> m (b) 0.174 0.032 0.000 0.111 0.237 0.032 0.108 0.237
#> x (cp) -0.005 0.032 0.873 -0.067 0.057 0.032 -0.068 0.059
#>
#> Variances:
#> Std SE p CI.Lo CI.Up bSE bCI.Lo bCI.Up
#> .m 0.999 0.002 0.000 0.996 1.003 0.002 0.992 1.000
#> .y 0.970 0.011 0.000 0.948 0.992 0.011 0.944 0.986
#> x 1.000
#>
#> Defined Parameters:
#> Std SE p CI.Lo CI.Up bSE bCI.Lo bCI.Up
#> ab (ab) 0.005 0.006 0.428 -0.007 0.017 0.006 -0.008 0.017
#> total (total) -0.000 0.033 0.993 -0.065 0.064 0.033 -0.066 0.065
#>
#> Footnote:
#> - Std: Standardized estimates.
#> - SE: Delta method standard errors.
#> - p: Delta method p-values.
#> - CI.Lo, CI.Up: Delta method confidence intervals.
#> - bSE: Bootstrap standard errors.
#> - bCI.Lo, bCI.Up: Bootstrap confidence intervals.
# this function also do not require 'se = "boot"' when fitting the model
fit2 <- sem(mod, data = dat, fixed.x = FALSE)
fit2 <- store_boot(fit2, R = 500)
std_boot2 <- standardizedSolution_boot(fit2)
#> Warning in standardizedSolution_boot(fit2): The number of bootstrap samples
#> (500) is less than 'boot_pvalue_min_size' (1000). Bootstrap p-values are not
#> computed.
print(std_boot)
#>
#> Bootstrapping:
#>
#> Valid Bootstrap Samples: 498
#> Level of Confidence: 95.0%
#> CI Type: Percentile
#> Standardization Type: std.all
#>
#> Parameter Estimates Settings:
#>
#> Standard errors: Bootstrap
#> Number of requested bootstrap draws: 500
#> Number of successful bootstrap draws: 498
#>
#> Regressions:
#> Std SE p CI.Lo CI.Up bSE bCI.Lo bCI.Up
#> m ~
#> x (a) 0.027 0.034 0.425 -0.040 0.095 0.035 -0.047 0.088
#> y ~
#> m (b) 0.174 0.032 0.000 0.111 0.237 0.032 0.108 0.237
#> x (cp) -0.005 0.032 0.873 -0.067 0.057 0.032 -0.068 0.059
#>
#> Variances:
#> Std SE p CI.Lo CI.Up bSE bCI.Lo bCI.Up
#> .m 0.999 0.002 0.000 0.996 1.003 0.002 0.992 1.000
#> .y 0.970 0.011 0.000 0.948 0.992 0.011 0.944 0.986
#> x 1.000
#>
#> Defined Parameters:
#> Std SE p CI.Lo CI.Up bSE bCI.Lo bCI.Up
#> ab (ab) 0.005 0.006 0.428 -0.007 0.017 0.006 -0.008 0.017
#> total (total) -0.000 0.033 0.993 -0.065 0.064 0.033 -0.066 0.065
#>
#> Footnote:
#> - Std: Standardized estimates.
#> - SE: Delta method standard errors.
#> - p: Delta method p-values.
#> - CI.Lo, CI.Up: Delta method confidence intervals.
#> - bSE: Bootstrap standard errors.
#> - bCI.Lo, bCI.Up: Bootstrap confidence intervals.
# Change confidence level
std_boot <- standardizedSolution_boot(fit, level = 0.99)
# Use bias-corrected bootstrap CIs
std_boot <- standardizedSolution_boot(fit, boot_ci_type = "bc")
std_boot <- standardizedSolution_boot(fit, boot_ci_type = "bca.simple")
# Compute delta ratio
std_boot <- standardizedSolution_boot(fit, boot_delta_ratio = TRUE)
# Do not save bootstrap estimates
std_boot <- standardizedSolution_boot(fit, save_boot_est_std = FALSE)
# Turn off asymmetric bootstrap p-values
std_boot <- standardizedSolution_boot(fit, boot_pvalue = FALSE)
# Combine options
std_boot <- standardizedSolution_boot(fit,
boot_ci_type = "bc",
boot_delta_ratio = TRUE)
# Print standardized solution in friendly format
print(std_boot, output = "text")
# Print with more decimal places (e.g., 5 decimal digits)
print(std_boot, nd = 5)
# Print only bootstrap confidence intervals
print(std_boot, boot_ci_only = TRUE)
# Print both unstandardized and standardized solution
print(std_boot, standardized_only = FALSE)
# Combine options: more decimals + show both solutions
print(std_boot, nd = 4, standardized_only = FALSE)
# Combine options: show only bootstrap CI, 5 decimal places
print(std_boot, boot_ci_only = TRUE, nd = 5)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.