The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

semboottools::standardizedSolution_boot

library(semboottools)
library(lavaan)

Function Syntax

standardizedSolution_boot(object,
                          level = .95,
                          type = "std.all",
                          boot_delta_ratio = FALSE,
                          boot_ci_type = c("perc", "bc", "bca.simple"),
                          save_boot_est_std = TRUE,
                          boot_pvalue = TRUE,
                          boot_pvalue_min_size = 1000,
                          ...)

Arguments

Argument Description
object A model fitted by lavaan.
level Confidence level for the confidence intervals. For example, .95 gives 95% confidence intervals.
type Type of standardized coefficients. Same as in lavaan::standardizedSolution(), such as "std.all" or "std.lv".
boot_delta_ratio Whether to calculate how wide the bootstrap confidence interval is compared to the usual confidence interval (delta method). Useful for comparing both methods.
boot_ci_type Method for forming bootstrap confidence intervals. "perc" gives percentile intervals; "bc" and "bca.simple" give bias-corrected intervals.
save_boot_est_std Whether to save the bootstrap estimates of standardized coefficients in the result. Saved in the attribute boot_est_std if TRUE.
boot_pvalue Whether to compute asymmetric p-values based on bootstrap results. Only available when percentile confidence intervals are used.
boot_pvalue_min_size Minimum number of valid bootstrap samples needed to compute asymmetric p-values. If fewer samples are available, p-values will not be computed and will be shown as NA.
... Additional arguments passed to lavaan::standardizedSolution().

Example

Data and Model

# Set seed for reproducibility
set.seed(1234)

# Generate data
n <- 1000
x <- runif(n) - 0.5
m <- 0.20 * x + rnorm(n)
y <- 0.17 * m + rnorm(n)
dat <- data.frame(x, y, m)

# Specify mediation model in lavaan syntax
mod <- '
  m ~ a * x
  y ~ b * m + cp * x
  ab := a * b
  total := a * b + cp
'

Basic usage: default settings

# (should use ≥2000 in real studies)
fit <- sem(mod, data = dat, se = "boot", bootstrap = 500)
#> Warning: lavaan->lav_model_nvcov_bootstrap():  
#>    2 bootstrap runs failed or did not converge.
std_boot <- standardizedSolution_boot(fit)
#> Warning in standardizedSolution_boot(fit): The number of bootstrap samples
#> (498) is less than 'boot_pvalue_min_size' (1000). Bootstrap p-values are not
#> computed.
print(std_boot)
#> 
#> Bootstrapping:
#>                                     
#>  Valid Bootstrap Samples: 498       
#>  Level of Confidence:     95.0%     
#>  CI Type:                 Percentile
#>  Standardization Type:    std.all   
#> 
#> Parameter Estimates Settings:
#>                                                 
#>  Standard errors:                      Bootstrap
#>  Number of requested bootstrap draws:  500      
#>  Number of successful bootstrap draws: 498      
#> 
#> Regressions:
#>                   Std    SE     p  CI.Lo CI.Up   bSE bCI.Lo bCI.Up
#>  m ~                                                              
#>   x (a)         0.027 0.034 0.425 -0.040 0.095 0.035 -0.047  0.088
#>  y ~                                                              
#>   m (b)         0.174 0.032 0.000  0.111 0.237 0.032  0.108  0.237
#>   x (cp)       -0.005 0.032 0.873 -0.067 0.057 0.032 -0.068  0.059
#> 
#> Variances:
#>                   Std    SE     p  CI.Lo CI.Up   bSE bCI.Lo bCI.Up
#>   .m            0.999 0.002 0.000  0.996 1.003 0.002  0.992  1.000
#>   .y            0.970 0.011 0.000  0.948 0.992 0.011  0.944  0.986
#>    x            1.000                                             
#> 
#> Defined Parameters:
#>                   Std    SE     p  CI.Lo CI.Up   bSE bCI.Lo bCI.Up
#>  ab (ab)        0.005 0.006 0.428 -0.007 0.017 0.006 -0.008  0.017
#>  total (total) -0.000 0.033 0.993 -0.065 0.064 0.033 -0.066  0.065
#> 
#> Footnote:
#> - Std: Standardized estimates.
#> - SE: Delta method standard errors.
#> - p: Delta method p-values.
#> - CI.Lo, CI.Up: Delta method confidence intervals.
#> - bSE: Bootstrap standard errors.
#> - bCI.Lo, bCI.Up: Bootstrap confidence intervals.
# this function also do not require 'se = "boot"' when fitting the model
fit2 <- sem(mod, data = dat, fixed.x = FALSE)
fit2 <- store_boot(fit2, R = 500)
std_boot2 <- standardizedSolution_boot(fit2)
#> Warning in standardizedSolution_boot(fit2): The number of bootstrap samples
#> (500) is less than 'boot_pvalue_min_size' (1000). Bootstrap p-values are not
#> computed.
print(std_boot)
#> 
#> Bootstrapping:
#>                                     
#>  Valid Bootstrap Samples: 498       
#>  Level of Confidence:     95.0%     
#>  CI Type:                 Percentile
#>  Standardization Type:    std.all   
#> 
#> Parameter Estimates Settings:
#>                                                 
#>  Standard errors:                      Bootstrap
#>  Number of requested bootstrap draws:  500      
#>  Number of successful bootstrap draws: 498      
#> 
#> Regressions:
#>                   Std    SE     p  CI.Lo CI.Up   bSE bCI.Lo bCI.Up
#>  m ~                                                              
#>   x (a)         0.027 0.034 0.425 -0.040 0.095 0.035 -0.047  0.088
#>  y ~                                                              
#>   m (b)         0.174 0.032 0.000  0.111 0.237 0.032  0.108  0.237
#>   x (cp)       -0.005 0.032 0.873 -0.067 0.057 0.032 -0.068  0.059
#> 
#> Variances:
#>                   Std    SE     p  CI.Lo CI.Up   bSE bCI.Lo bCI.Up
#>   .m            0.999 0.002 0.000  0.996 1.003 0.002  0.992  1.000
#>   .y            0.970 0.011 0.000  0.948 0.992 0.011  0.944  0.986
#>    x            1.000                                             
#> 
#> Defined Parameters:
#>                   Std    SE     p  CI.Lo CI.Up   bSE bCI.Lo bCI.Up
#>  ab (ab)        0.005 0.006 0.428 -0.007 0.017 0.006 -0.008  0.017
#>  total (total) -0.000 0.033 0.993 -0.065 0.064 0.033 -0.066  0.065
#> 
#> Footnote:
#> - Std: Standardized estimates.
#> - SE: Delta method standard errors.
#> - p: Delta method p-values.
#> - CI.Lo, CI.Up: Delta method confidence intervals.
#> - bSE: Bootstrap standard errors.
#> - bCI.Lo, bCI.Up: Bootstrap confidence intervals.

standardizedSolution_boot(): Different Options

# Change confidence level
std_boot <- standardizedSolution_boot(fit, level = 0.99)
# Use bias-corrected bootstrap CIs
std_boot <- standardizedSolution_boot(fit, boot_ci_type = "bc")
std_boot <- standardizedSolution_boot(fit, boot_ci_type = "bca.simple")
# Compute delta ratio
std_boot <- standardizedSolution_boot(fit, boot_delta_ratio = TRUE)
# Do not save bootstrap estimates
std_boot <- standardizedSolution_boot(fit, save_boot_est_std = FALSE)
# Turn off asymmetric bootstrap p-values
std_boot <- standardizedSolution_boot(fit, boot_pvalue = FALSE)
# Combine options
std_boot <- standardizedSolution_boot(fit,
                                      boot_ci_type = "bc",
                                      boot_delta_ratio = TRUE)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.