The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
This vignette demonstrates how to form bootstrapping confidence intervals and examining bootstrap estimates in SEM using semboottools.
We use a simple mediation model with a large sample (N = 1000).
This model includes: A predictor x, A mediator m, An outcome y.
Indirect effect (ab) and total effect (total) defined.
# Set seed for reproducibility
set.seed(1234)
# Generate data
n <- 1000
x <- runif(n) - 0.5
m <- 0.20 * x + rnorm(n)
y <- 0.17 * m + rnorm(n)
dat <- data.frame(x, y, m)
# Specify mediation model in lavaan syntax
mod <- '
m ~ a * x
y ~ b * m + cp * x
ab := a * b
total := a * b + cp
'
fit <- sem(mod, data = dat, fixed.x = FALSE)
summary(fit, ci = TRUE)
#> lavaan 0.6-19 ended normally after 6 iterations
#>
#> Estimator ML
#> Optimization method NLMINB
#> Number of model parameters 6
#>
#> Number of observations 1000
#>
#> Model Test User Model:
#>
#> Test statistic 0.000
#> Degrees of freedom 0
#>
#> Parameter Estimates:
#>
#> Standard errors Standard
#> Information Expected
#> Information saturated (h1) model Structured
#>
#> Regressions:
#> Estimate Std.Err z-value P(>|z|) ci.lower ci.upper
#> m ~
#> x (a) 0.089 0.103 0.867 0.386 -0.113 0.291
#> y ~
#> m (b) 0.192 0.034 5.578 0.000 0.125 0.260
#> x (cp) -0.018 0.112 -0.162 0.871 -0.238 0.202
#>
#> Variances:
#> Estimate Std.Err z-value P(>|z|) ci.lower ci.upper
#> .m 0.898 0.040 22.361 0.000 0.819 0.977
#> .y 1.065 0.048 22.361 0.000 0.972 1.159
#> x 0.085 0.004 22.361 0.000 0.077 0.092
#>
#> Defined Parameters:
#> Estimate Std.Err z-value P(>|z|) ci.lower ci.upper
#> ab 0.017 0.020 0.857 0.392 -0.022 0.056
#> total -0.001 0.114 -0.009 0.993 -0.224 0.222
# Ensure bootstrap estimates are stored
fit <- store_boot(fit)
# Basic usage: default settings
# Compute standardized solution with percentile bootstrap CIs
std_boot <- standardizedSolution_boot(fit)
print(std_boot)
#>
#> Bootstrapping:
#>
#> Valid Bootstrap Samples: 1000
#> Level of Confidence: 95.0%
#> CI Type: Percentile
#> P-Value: Asymmetric
#> Standardization Type: std.all
#>
#> Parameter Estimates Settings:
#>
#> Standard errors: Standard
#> Information: Expected
#> Information saturated (h1) model: Structured
#>
#> Regressions:
#> Std SE p CI.Lo CI.Up bSE bp bCI.Lo bCI.Up
#> m ~
#> x (a) 0.027 0.032 0.386 -0.035 0.089 0.033 0.446 -0.037 0.089
#> y ~
#> m (b) 0.174 0.031 0.000 0.114 0.234 0.032 0.000 0.109 0.237
#> x (cp) -0.005 0.031 0.871 -0.066 0.056 0.031 0.868 -0.067 0.059
#>
#> Variances:
#> Std SE p CI.Lo CI.Up bSE bp bCI.Lo bCI.Up
#> .m 0.999 0.002 0.000 0.996 1.003 0.002 0.000 0.992 1.000
#> .y 0.970 0.011 0.000 0.949 0.991 0.011 0.000 0.943 0.986
#> x 1.000
#>
#> Defined Parameters:
#> Std SE p CI.Lo CI.Up bSE bp bCI.Lo bCI.Up
#> ab (ab) 0.005 0.006 0.391 -0.006 0.016 0.006 0.446 -0.007 0.016
#> total (total) -0.000 0.032 0.993 -0.062 0.062 0.032 0.994 -0.065 0.064
#>
#> Footnote:
#> - Std: Standardized estimates.
#> - SE: Delta method standard errors.
#> - p: Delta method p-values.
#> - CI.Lo, CI.Up: Delta method confidence intervals.
#> - bSE: Bootstrap standard errors.
#> - bCI.Lo, bCI.Up: Bootstrap confidence intervals.
#> - bp: Bootstrap p-values.
‘parameterEstimates_boot()’ computes bootstrap CIs, standard errors, and optional asymmetric p-values for unstandardized parameter estimates, including both free and user-defined parameters.
It requires bootstrap estimates stored via store_boot(), supports percentile and bias-corrected CIs, and outputs bootstrap SEs as the standard deviation of estimates.
# Basic usage: default settings
# Compute unstandardized solution with percentile bootstrap CIs
est_boot <- parameterEstimates_boot(fit)
# Print results
print(est_boot)
#>
#> Bootstrapping:
#>
#> Valid Bootstrap Samples: 1000
#> Level of Confidence: 95.0%
#> CI Type: Percentile
#> P-Value: Asymmetric
#>
#> Parameter Estimates Settings:
#>
#> Standard errors: Standard
#> Information: Expected
#> Information saturated (h1) model: Structured
#>
#> Regressions:
#> Estimate SE p CI.Lo CI.Up bSE bp bCI.Lo bCI.Up
#> m ~
#> x (a) 0.089 0.103 0.386 -0.113 0.291 0.108 0.446 -0.121 0.287
#> y ~
#> m (b) 0.192 0.034 0.000 0.125 0.260 0.037 0.000 0.121 0.265
#> x (cp) -0.018 0.112 0.871 -0.238 0.202 0.112 0.868 -0.240 0.214
#>
#> Variances:
#> Estimate SE p CI.Lo CI.Up bSE bp bCI.Lo bCI.Up
#> .m 0.898 0.040 0.000 0.819 0.977 0.041 0.000 0.820 0.983
#> .y 1.065 0.048 0.000 0.972 1.159 0.045 0.000 0.973 1.151
#> x 0.085 0.004 0.000 0.077 0.092 0.002 0.000 0.080 0.089
#>
#> Defined Parameters:
#> Estimate SE p CI.Lo CI.Up bSE bp bCI.Lo bCI.Up
#> ab (ab) 0.017 0.020 0.392 -0.022 0.056 0.021 0.446 -0.025 0.059
#> total (total) -0.001 0.114 0.993 -0.224 0.222 0.115 0.994 -0.229 0.225
#>
#> Footnote:
#> - SE: Original standard errors.
#> - p: Original p-values.
#> - CI.Lo, CI.Up: Original confidence intervals.
#> - bSE: Bootstrap standard errors.
#> - bCI.Lo, bCI.Up: Bootstrap confidence intervals.
#> - bp: Bootstrap p-values.
To examine the distribution of bootstrap estimates, two functions are available:
hist_qq_boot()
For histogram + normal QQ-plot of one
parameter.
scatter_boot()
For scatterplot matrix of two or more
parameters.
hist_qq_boot()
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.