The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

semboottools

Overview

This vignette demonstrates how to form bootstrapping confidence intervals and examining bootstrap estimates in SEM using semboottools.

library(semboottools)
library(lavaan)

Example: Simple Mediation Model

We use a simple mediation model with a large sample (N = 1000).

This model includes: A predictor x, A mediator m, An outcome y.

Indirect effect (ab) and total effect (total) defined.

# Set seed for reproducibility
set.seed(1234)

# Generate data
n <- 1000
x <- runif(n) - 0.5
m <- 0.20 * x + rnorm(n)
y <- 0.17 * m + rnorm(n)
dat <- data.frame(x, y, m)

# Specify mediation model in lavaan syntax
mod <- '
  m ~ a * x
  y ~ b * m + cp * x
  ab := a * b
  total := a * b + cp
'

Fit the Model with Bootstrapping

fit <- sem(mod, data = dat, fixed.x = FALSE)
summary(fit, ci = TRUE)
#> lavaan 0.6-19 ended normally after 6 iterations
#> 
#>   Estimator                                         ML
#>   Optimization method                           NLMINB
#>   Number of model parameters                         6
#> 
#>   Number of observations                          1000
#> 
#> Model Test User Model:
#>                                                       
#>   Test statistic                                 0.000
#>   Degrees of freedom                                 0
#> 
#> Parameter Estimates:
#> 
#>   Standard errors                             Standard
#>   Information                                 Expected
#>   Information saturated (h1) model          Structured
#> 
#> Regressions:
#>                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
#>   m ~                                                                   
#>     x          (a)    0.089    0.103    0.867    0.386   -0.113    0.291
#>   y ~                                                                   
#>     m          (b)    0.192    0.034    5.578    0.000    0.125    0.260
#>     x         (cp)   -0.018    0.112   -0.162    0.871   -0.238    0.202
#> 
#> Variances:
#>                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
#>    .m                 0.898    0.040   22.361    0.000    0.819    0.977
#>    .y                 1.065    0.048   22.361    0.000    0.972    1.159
#>     x                 0.085    0.004   22.361    0.000    0.077    0.092
#> 
#> Defined Parameters:
#>                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
#>     ab                0.017    0.020    0.857    0.392   -0.022    0.056
#>     total            -0.001    0.114   -0.009    0.993   -0.224    0.222
# Ensure bootstrap estimates are stored
fit <- store_boot(fit) 

Form Bootstrap CIs for Standardized Coefficients

# Basic usage: default settings
# Compute standardized solution with percentile bootstrap CIs
std_boot <- standardizedSolution_boot(fit)
print(std_boot)
#> 
#> Bootstrapping:
#>                                     
#>  Valid Bootstrap Samples: 1000      
#>  Level of Confidence:     95.0%     
#>  CI Type:                 Percentile
#>  P-Value:                 Asymmetric
#>  Standardization Type:    std.all   
#> 
#> Parameter Estimates Settings:
#>                                              
#>  Standard errors:                  Standard  
#>  Information:                      Expected  
#>  Information saturated (h1) model: Structured
#> 
#> Regressions:
#>                   Std    SE     p  CI.Lo CI.Up   bSE    bp bCI.Lo bCI.Up
#>  m ~                                                                    
#>   x (a)         0.027 0.032 0.386 -0.035 0.089 0.033 0.446 -0.037  0.089
#>  y ~                                                                    
#>   m (b)         0.174 0.031 0.000  0.114 0.234 0.032 0.000  0.109  0.237
#>   x (cp)       -0.005 0.031 0.871 -0.066 0.056 0.031 0.868 -0.067  0.059
#> 
#> Variances:
#>                   Std    SE     p  CI.Lo CI.Up   bSE    bp bCI.Lo bCI.Up
#>   .m            0.999 0.002 0.000  0.996 1.003 0.002 0.000  0.992  1.000
#>   .y            0.970 0.011 0.000  0.949 0.991 0.011 0.000  0.943  0.986
#>    x            1.000                                                   
#> 
#> Defined Parameters:
#>                   Std    SE     p  CI.Lo CI.Up   bSE    bp bCI.Lo bCI.Up
#>  ab (ab)        0.005 0.006 0.391 -0.006 0.016 0.006 0.446 -0.007  0.016
#>  total (total) -0.000 0.032 0.993 -0.062 0.062 0.032 0.994 -0.065  0.064
#> 
#> Footnote:
#> - Std: Standardized estimates.
#> - SE: Delta method standard errors.
#> - p: Delta method p-values.
#> - CI.Lo, CI.Up: Delta method confidence intervals.
#> - bSE: Bootstrap standard errors.
#> - bCI.Lo, bCI.Up: Bootstrap confidence intervals.
#> - bp: Bootstrap p-values.

Form Bootstrap CIs for for Unstandardized Cofficients

‘parameterEstimates_boot()’ computes bootstrap CIs, standard errors, and optional asymmetric p-values for unstandardized parameter estimates, including both free and user-defined parameters.

It requires bootstrap estimates stored via store_boot(), supports percentile and bias-corrected CIs, and outputs bootstrap SEs as the standard deviation of estimates.

# Basic usage: default settings
# Compute unstandardized solution with percentile bootstrap CIs
est_boot <- parameterEstimates_boot(fit)

# Print results
print(est_boot)
#> 
#> Bootstrapping:
#>                                     
#>  Valid Bootstrap Samples: 1000      
#>  Level of Confidence:     95.0%     
#>  CI Type:                 Percentile
#>  P-Value:                 Asymmetric
#> 
#> Parameter Estimates Settings:
#>                                              
#>  Standard errors:                  Standard  
#>  Information:                      Expected  
#>  Information saturated (h1) model: Structured
#> 
#> Regressions:
#>                Estimate    SE     p  CI.Lo CI.Up   bSE    bp bCI.Lo bCI.Up
#>  m ~                                                                      
#>   x (a)           0.089 0.103 0.386 -0.113 0.291 0.108 0.446 -0.121  0.287
#>  y ~                                                                      
#>   m (b)           0.192 0.034 0.000  0.125 0.260 0.037 0.000  0.121  0.265
#>   x (cp)         -0.018 0.112 0.871 -0.238 0.202 0.112 0.868 -0.240  0.214
#> 
#> Variances:
#>                Estimate    SE     p  CI.Lo CI.Up   bSE    bp bCI.Lo bCI.Up
#>   .m              0.898 0.040 0.000  0.819 0.977 0.041 0.000  0.820  0.983
#>   .y              1.065 0.048 0.000  0.972 1.159 0.045 0.000  0.973  1.151
#>    x              0.085 0.004 0.000  0.077 0.092 0.002 0.000  0.080  0.089
#> 
#> Defined Parameters:
#>                Estimate    SE     p  CI.Lo CI.Up   bSE    bp bCI.Lo bCI.Up
#>  ab (ab)          0.017 0.020 0.392 -0.022 0.056 0.021 0.446 -0.025  0.059
#>  total (total)   -0.001 0.114 0.993 -0.224 0.222 0.115 0.994 -0.229  0.225
#> 
#> Footnote:
#> - SE: Original standard errors.
#> - p: Original p-values.
#> - CI.Lo, CI.Up: Original confidence intervals.
#> - bSE: Bootstrap standard errors.
#> - bCI.Lo, bCI.Up: Bootstrap confidence intervals.
#> - bp: Bootstrap p-values.

Visualize Bootstrap Estimates

To examine the distribution of bootstrap estimates, two functions are available:

Histogram and QQ Plot: hist_qq_boot()

# For estimates of user-defined parameters,
hist_qq_boot(fit, "ab", standardized = FALSE)

# For estimates in standardized solution,
hist_qq_boot(fit, "ab", standardized = TRUE)

Scatterplot Matrix: scatter_boot()

# standardized solution
scatter_boot(fit, c("a", "b", "ab"), standardized = TRUE)

# unstandardized solution
scatter_boot(fit, c("a", "b", "ab"), standardized = FALSE)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.