The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Argument | Description |
---|---|
object |
A model fitted by lavaan . |
level |
Confidence level for the confidence intervals. For example,
.95 gives 95% confidence intervals. |
standardized |
Whether to return standardized estimates. Same as in
lavaan::parameterEstimates() . You can use
"std.all" , "std.lv" , etc. For detailed
standardized results with CIs, use
standardizedSolution_boot() instead. |
boot_org_ratio |
Whether to calculate how wide the bootstrap confidence interval is compared to the original confidence interval (from delta method). Useful to compare the two methods. |
boot_ci_type |
Method for forming bootstrap confidence intervals.
"perc" gives percentile intervals; "bc" and
"bca.simple" give bias-corrected intervals. |
save_boot_est |
Whether to save the bootstrap estimates in the result. Saved in
attributes boot_est_ustd (free parameters) and
boot_def (user-defined parameters) if
TRUE . |
boot_pvalue |
Whether to compute asymmetric p-values based on bootstrap results. Only available when percentile confidence intervals are used. |
boot_pvalue_min_size |
Minimum number of valid bootstrap samples needed to compute
asymmetric p-values. If fewer samples are available,
p-values will not be computed and will be shown as
NA . |
... |
Additional arguments passed to
lavaan::parameterEstimates() . |
# Ensure bootstrap estimates are stored
fit <- sem(mod, data = dat, fixed.x = FALSE)
fit <- store_boot(fit)
est_boot <- parameterEstimates_boot(fit)
print(est_boot)
#>
#> Bootstrapping:
#>
#> Valid Bootstrap Samples: 1000
#> Level of Confidence: 95.0%
#> CI Type: Percentile
#> P-Value: Asymmetric
#>
#> Parameter Estimates Settings:
#>
#> Standard errors: Standard
#> Information: Expected
#> Information saturated (h1) model: Structured
#>
#> Regressions:
#> Estimate SE p CI.Lo CI.Up bSE bp bCI.Lo bCI.Up
#> m ~
#> x (a) 0.089 0.103 0.386 -0.113 0.291 0.108 0.446 -0.121 0.287
#> y ~
#> m (b) 0.192 0.034 0.000 0.125 0.260 0.037 0.000 0.121 0.265
#> x (cp) -0.018 0.112 0.871 -0.238 0.202 0.112 0.868 -0.240 0.214
#>
#> Variances:
#> Estimate SE p CI.Lo CI.Up bSE bp bCI.Lo bCI.Up
#> .m 0.898 0.040 0.000 0.819 0.977 0.041 0.000 0.820 0.983
#> .y 1.065 0.048 0.000 0.972 1.159 0.045 0.000 0.973 1.151
#> x 0.085 0.004 0.000 0.077 0.092 0.002 0.000 0.080 0.089
#>
#> Defined Parameters:
#> Estimate SE p CI.Lo CI.Up bSE bp bCI.Lo bCI.Up
#> ab (ab) 0.017 0.020 0.392 -0.022 0.056 0.021 0.446 -0.025 0.059
#> total (total) -0.001 0.114 0.993 -0.224 0.222 0.115 0.994 -0.229 0.225
#>
#> Footnote:
#> - SE: Original standard errors.
#> - p: Original p-values.
#> - CI.Lo, CI.Up: Original confidence intervals.
#> - bSE: Bootstrap standard errors.
#> - bCI.Lo, bCI.Up: Bootstrap confidence intervals.
#> - bp: Bootstrap p-values.
# Change confidence level to 99%
est_boot <- parameterEstimates_boot(fit, level = 0.99)
# Use bias-corrected (BC) bootstrap confidence intervals
est_boot <- parameterEstimates_boot(fit, boot_ci_type = "bc")
# Turn off asymmetric bootstrap p-values
est_boot <- parameterEstimates_boot(fit, boot_pvalue = FALSE)
# Do not save bootstrap estimates (for memory saving)
est_boot <- parameterEstimates_boot(fit, save_boot_est = FALSE)
# Compute and display bootstrap-to-original CI ratio
est_boot <- parameterEstimates_boot(fit, boot_org_ratio = TRUE)
# Combine options: BC CI, 99% level, no p-values
est_boot <- parameterEstimates_boot(fit,
level = 0.99,
boot_ci_type = "bc",
boot_pvalue = FALSE)
# Print with more decimal places (e.g., 5 digits)
print(est_boot, nd = 5)
# Print in lavaan-style text format (similar to summary())
print(est_boot, output = "text")
# Print as a clean data frame table
print(est_boot, output = "table")
# Drop specific columns (e.g., "Z") in lavaan.printer format
print(est_boot, drop_cols = "Z")
# Combine options: 5 decimal digits, text format
print(est_boot, nd = 5, output = "text")
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.