The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
\(\boldsymbol{\beta}\) — vertical coefficient vector.
\(\boldsymbol{X}\) — Covariate matrix with one row per observation.
\(\boldsymbol{X_i}\) — i’th row from \(\boldsymbol{X}\)
\(\boldsymbol{Y}\) — Vertical binary outcome vector.
\(k\) — number of covariates.
\(n\) — number of observations.
\(i\) — observation index.
\(j\) — covariate index.
\[\begin{align} \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{bmatrix} \quad \boldsymbol{X} = \begin{bmatrix} 1 & X_{1, 1} & X_{2, 1} & \ldots & X_{k, 1} \\ 1 & X_{1, 2} & X_{2, 2} & \ldots & X_{k, 2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & X_{1, n} & X_{2, n} & \ldots & X_{k, n} \\ \end{bmatrix} = \begin{bmatrix} \boldsymbol{X_1} \\ \boldsymbol{X_2} \\ \vdots \\ \boldsymbol{X_n} \end{bmatrix} \quad \boldsymbol{Y} = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_3 \end{bmatrix} \end{align}\]
\[ P(Y_i = 1) = \frac{\lambda}{1 + \text{exp}(\boldsymbol{X_i}\boldsymbol{\beta})} = \frac{\text{exp}(\theta)}{(1 + \text{exp}(\theta))(1 + \text{exp}(\boldsymbol{X_i}\boldsymbol{\beta}))} \]
\(\theta\) is the logit transformation of \(\lambda\): \(\theta = \text{log}(\frac{\lambda}{1-\lambda})\)
Optimisation is done using the \(\theta\) parameterisation because it does not constrain the likelihood.
\[ l(\theta, \boldsymbol{\beta}) = \sum_i \ y_i \ \theta - \text{log} \big( 1+\text{exp}(\boldsymbol{X_i}\boldsymbol{\beta}) \big) - \text{log} \big( 1+\text{exp}(\theta) \big) + (1-y_i)\text{log} \Big( 1 + \text{exp} \big( \boldsymbol{X_i}\boldsymbol{\beta} \big) \big( 1 + \text{exp}(\theta) \big) \Big) \]
\[\begin{align} \begin{bmatrix} \frac{dl}{d\lambda} \\ \frac{dl}{d\beta_j} \end{bmatrix} = \begin{bmatrix} \sum_i y_i - \frac{\text{exp}(\theta)}{1 + \text{exp}(\theta)} + \frac{ (1 - y_i) \text{exp}(\boldsymbol{X_i}\boldsymbol{\beta}) \text{exp}(\theta) }{ 1 + \text{exp}(\boldsymbol{X_i}\boldsymbol{\beta}) \big( 1 + \text{exp}(\theta) \big) }\\ \sum_i x_{j, i} \Big( -\frac{ \text{exp}(\boldsymbol{X_i}\boldsymbol{\beta}) }{ 1 + \text{exp}(\boldsymbol{X_i}\boldsymbol{\beta}) } + \frac{ (1 - y_i) \text{exp}(\boldsymbol{X_i}\boldsymbol{\beta}) \big( 1 + \text{exp}(\theta) \big) }{ 1 + \text{exp}(\boldsymbol{X_i}\boldsymbol{\beta}) \big( 1 + \text{exp}(\theta) \big) } \Big) \\ \end{bmatrix} \end{align}\]
\[\begin{align} \begin{array}{cc} \begin{matrix} \frac{dl}{d\lambda} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad & \frac{dl}{d\beta_j} \end{matrix}\\ \begin{matrix} \frac{dl}{d\lambda} \\ \frac{dl}{d\beta_j} \\ \end{matrix} \begin{bmatrix} \sum_i - \frac{ \text{exp}(\theta) }{ \big( 1+\text{exp}(\theta) \big)^2 } + \frac{ (1-y_i)(1+\text{exp}(\boldsymbol{X_i}\boldsymbol{\beta})) \text{exp}(\boldsymbol{X_i}\boldsymbol{\beta}) \text{exp}(\theta) }{ \Big( 1 + \text{exp}(\boldsymbol{X_i}\boldsymbol{\beta}) \big( 1 + \text{exp}(\theta) \big) \Big)^2 } & \sum_i x_{j,i} \Big( \frac{ (1-y_i) \text{exp}(\boldsymbol{X_i}\boldsymbol{\beta}) \text{exp}(\theta) }{ \Big( 1 + \text{exp}(\boldsymbol{X_i}\boldsymbol{\beta}) \big( 1 + \text{exp}(\theta) \big) \Big)^2 } \Big) \\ . & \sum_i x_{j,i} \Big( - \frac{ \text{exp}(\boldsymbol{X_i}\boldsymbol{\beta}) }{ \big( 1 + \text{exp}(\boldsymbol{X_i}\boldsymbol{\beta}) \big)^2 } + \frac{ (1-y_i)(1+\text{exp}(\theta))\text{exp}(\boldsymbol{X_i}\boldsymbol{\beta}) }{ \Big( 1 + \text{exp}(\boldsymbol{X_i}\boldsymbol{\beta}) \big( 1 + \text{exp}(\theta) \big) \Big)^2 } \Big) \\ \end{bmatrix} \end{array} \end{align}\]
Dunning AJ (2006). “A model for immunological correlates of protection.” Statistics in Medicine, 25(9), 1485-1497. https://doi.org/10.1002/sim.2282.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.