The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The scDHA software package can perform cell segregation through unsupervised learning, dimension reduction and visualization, cell classification, and time-trajectory inference on single-cell RNA sequencing data.
install.packages('scDHA')
utils::install.packages('devtools')
devtools::install_github('duct317/scDHA')
devtools::install_github('duct317/scDHA', build_manual = T, build_vignettes = T)
libtorch
: library(scDHA)
libtorch
can be installed using: torch::install_torch()
library(scDHA)
data('Goolam'); data <- t(Goolam$data); label <- as.character(Goolam$label)
data <- log2(data + 1)
result <- scDHA(data, seed = 1)
cluster <- result$cluster
mclust::adjustedRandIndex(cluster,label)
To use our package for new data, the package includes these functions:
- scDHA: main function, doing dimension reuction and clustering. The input is a matrix with rows as samples and columns as genes. - scDHA.vis: visualization. The input is demension reduction output. - scDHA.pt: generating pseudotime. The input is demension reduction output. - scDHA.class: classification new data using available one. The inputs consist of train data matrix, train data label and new data matrix. - The result is reproducible by setting seed for these functions. - More detail about parameters for each function could be found in the manual.
Duc Tran, Hung Nguyen, Bang Tran, Carlo La Vecchia, Hung N. Luu, Tin Nguyen (2021). Fast and precise single-cell data analysis using a hierarchical autoencoder. Nature Communications, 12, 1029. doi: 10.1038/s41467-021-21312-2 (link)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.