The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The santaR
package is designed for the detection of
significantly altered time trajectories between study groups, in short
time-series.
As the visualisation of significantly altered time-trajectories is
critical to the interpretation of the process under study, this vignette
will detail the plotting options present in santaR
.
santaR_plot()
returns a ggplot2 plotObject
that can be further modified using ggplot2
grammar.
First we can analyse a subset of data using
santaR_auto_fit()
, returning a list of
SANTAObj.
library(santaR)
# Load a subset of the example data
tmp_data <- acuteInflammation$data[,1:6]
tmp_meta <- acuteInflammation$meta
# Analyse data, with confidence bands and p-value
res_acuteInf_df5 <- santaR_auto_fit(inputData=tmp_data, ind=tmp_meta$ind, time=tmp_meta$time, group=tmp_meta$group, df=5, ncores=0, CBand=TRUE, pval.dist=FALSE)
## Input data generated: 0.04 secs
## Spline fitted: 0.18 secs
## ConfBands done: 18.66 secs
## total time: 18.87 secs
Each variable can be accessed either by its list position or variable name:
# Default plot
# individual points, individual trajectories, group mean curves and confidence bands
# access by list position
santaR_plot(res_acuteInf_df5[[5]])
The individual points, trajectories, group mean curves and confidence bands can be turned on or off:
# only groupMeanCurve
santaR_plot(res_acuteInf_df5$var_5, showIndPoint=FALSE, showIndCurve=FALSE, showGroupMeanCurve=TRUE, showConfBand=TRUE)
# only Individuals
santaR_plot(res_acuteInf_df5$var_5, showIndPoint=TRUE, showIndCurve=TRUE, showGroupMeanCurve=FALSE, showConfBand=FALSE)
Title and axis can be altered to suit the analysis:
# remove the legend
santaR_plot(res_acuteInf_df5$var_5, title='A variable, no legend', legend=FALSE)
santaR_plot()
returns a ggplot2 plotObject
that can be modified using all the range of ggplot2
grammar:
library(ggplot2)
# add x and y labels by adding it outside the plotting function [not useful but shows that any ggplot command can be added to the plot]
santaR_plot(res_acuteInf_df5$var_5, title='A variable') + xlab('Time') + ylab('Variable value')
# Constrain the x axis (will remove points and raise warnings)
santaR_plot(res_acuteInf_df5$var_5, showConfBand=FALSE, title='A variable', xlab='Time', ylab='Variable value') + xlim(0,48)
## Warning: Removed 4 rows containing missing values or values outside the scale range
## (`geom_point()`).
## Warning: Removed 84 rows containing missing values or values outside the scale range
## (`geom_line()`).
## Removed 84 rows containing missing values or values outside the scale range
## (`geom_line()`).
## Removed 84 rows containing missing values or values outside the scale range
## (`geom_line()`).
## Removed 84 rows containing missing values or values outside the scale range
## (`geom_line()`).
## Removed 84 rows containing missing values or values outside the scale range
## (`geom_line()`).
## Warning: Removed 4 rows containing missing values or values outside the scale range
## (`geom_point()`).
## Warning: Removed 84 rows containing missing values or values outside the scale range
## (`geom_line()`).
## Removed 84 rows containing missing values or values outside the scale range
## (`geom_line()`).
## Removed 84 rows containing missing values or values outside the scale range
## (`geom_line()`).
## Removed 84 rows containing missing values or values outside the scale range
## (`geom_line()`).
## Removed 84 rows containing missing values or values outside the scale range
## (`geom_line()`).
Plots can be stored in a variables and combined in multiplots using
gridExtra grid.arrange()
:
library(gridExtra)
# store plot in a variable, plot multiple variables...
p1 <- santaR_plot(res_acuteInf_df5$var_3, title='First variable', xlab='Time', ylab='Variable value')
plot(p1)
p2 <- santaR_plot(res_acuteInf_df5$var_4, title='Second variable', xlab='Time', ylab='Variable value')
# multiplot
grid.arrange(p1, p2)
# Force both plots on the same y limits (remove legend from plots)
p1 <- santaR_plot(res_acuteInf_df5$var_3, title='First variable', xlab='Time', ylab='Variable value', legend=FALSE)
p2 <- santaR_plot(res_acuteInf_df5$var_4, title='Second variable', xlab='Time', ylab='Variable value', legend=FALSE)
p1 <- p1 + ylim(-1.2, 4.2)
p2 <- p2 + ylim(-1.2, 4.2)
grid.arrange(p1, p2, ncol=2 )
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.