The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Model-selection-MRHLP

Introduction

In this package, it is possible to select models based on information criteria such as BIC, AIC and ICL.

The selection is done on two parameters which are:

Data

Let’s select a MRHLP model for the following multivariate time series \(Y\):

data("multivtoydataset")
x <- multivtoydataset$x
y <- multivtoydataset[, c("y1", "y2", "y3")]
matplot(x, y, type = "l", xlab = "x", ylab = "Y", lty = 1)

Model selection with BIC

selectedmrhlp <- selectMRHLP(X = x, Y = y, Kmin = 2, Kmax = 6, pmin = 0, pmax = 3)
## The MRHLP model selected via the "BIC" has K = 5 regimes 
##  and the order of the polynomial regression is p = 0.
## BIC = -3033.20042397111
## AIC = -2913.75756459291

The selected model has \(K = 5\) regimes and the order of the polynomial regression is \(p = 0\). According to the way \(Y\) has been generated, these parameters are what we expected.

Let’s summarize the selected model:

selectedmrhlp$summary()
## ----------------------
## Fitted MRHLP model
## ----------------------
## 
## MRHLP model with K = 5 regimes
## 
##  log-likelihood nu       AIC     BIC       ICL
##       -2860.758 53 -2913.758 -3033.2 -3032.414
## 
## Clustering table:
##   1   2   3   4   5 
## 100 120 200 100 150 
## 
## 
## ------------------
## Regime 1 (K = 1):
## 
## Regression coefficients:
## 
##   Beta(d = 1) Beta(d = 2) Beta(d = 3)
## 1   0.1131005   0.9124035   -1.850509
## 
## Covariance matrix:
##                                    
##  1.19064699  0.12700417  0.05496662
##  0.12700417  0.90279499 -0.03272115
##  0.05496662 -0.03272115  0.89086804
## ------------------
## Regime 2 (K = 2):
## 
## Regression coefficients:
## 
##   Beta(d = 1) Beta(d = 2) Beta(d = 3)
## 1    7.190579    5.049538    9.952361
## 
## Covariance matrix:
##                                   
##   1.0723960 -0.18151782 0.12179798
##  -0.1815178  1.05340358 0.01211349
##   0.1217980  0.01211349 0.76527294
## ------------------
## Regime 3 (K = 3):
## 
## Regression coefficients:
## 
##   Beta(d = 1) Beta(d = 2) Beta(d = 3)
## 1    3.951224    5.941976    7.950232
## 
## Covariance matrix:
##                                     
##   1.02880640 -0.05856588 -0.02543545
##  -0.05856588  1.19527262  0.02309638
##  -0.02543545  0.02309638  1.01201958
## ------------------
## Regime 4 (K = 4):
## 
## Regression coefficients:
## 
##   Beta(d = 1) Beta(d = 2) Beta(d = 3)
## 1  -0.9461282   -1.901665   0.0135667
## 
## Covariance matrix:
##                                     
##   0.88092255 -0.02771294 -0.03959332
##  -0.02771294  1.14567525 -0.10726848
##  -0.03959332 -0.10726848  0.89325063
## ------------------
## Regime 5 (K = 5):
## 
## Regression coefficients:
## 
##   Beta(d = 1) Beta(d = 2) Beta(d = 3)
## 1    3.549319    1.888239    4.981038
## 
## Covariance matrix:
##                                 
##  1.1333159 0.25852405 0.03091090
##  0.2585241 1.21453178 0.05663565
##  0.0309109 0.05663565 0.84026581
selectedmrhlp$plot(what = "estimatedsignal")

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.