The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
MRHLP: Flexible and user-friendly probabilistic joint segmentation of multivariate time series (or multivariate structured longitudinal data) with smooth and/or abrupt regime changes by a mixture model-based multiple regression approach with a hidden logistic process, fitted by the EM algorithm.
It was written in R Markdown, using the knitr package for production.
See help(package="samurais")
for further details and references provided by citation("samurais")
.
mrhlp <- emMRHLP(multivtoydataset$x, multivtoydataset[,c("y1", "y2", "y3")],
K, p, q, variance_type, n_tries, max_iter, threshold, verbose,
verbose_IRLS)
## EM: Iteration : 1 || log-likelihood : -4975.54177550763
## EM: Iteration : 2 || log-likelihood : -3108.34368262058
## EM: Iteration : 3 || log-likelihood : -3083.17524290617
## EM: Iteration : 4 || log-likelihood : -3052.50226046505
## EM: Iteration : 5 || log-likelihood : -3020.60866761548
## EM: Iteration : 6 || log-likelihood : -2967.37662637476
## EM: Iteration : 7 || log-likelihood : -2948.61300516787
## EM: Iteration : 8 || log-likelihood : -2945.45995948196
## EM: Iteration : 9 || log-likelihood : -2937.99296980136
## EM: Iteration : 10 || log-likelihood : -2924.28973590932
## EM: Iteration : 11 || log-likelihood : -2901.25080505023
## EM: Iteration : 12 || log-likelihood : -2859.88249265728
## EM: Iteration : 13 || log-likelihood : -2858.05147227319
## EM: Iteration : 14 || log-likelihood : -2856.38015373797
## EM: Iteration : 15 || log-likelihood : -2854.68196733762
## EM: Iteration : 16 || log-likelihood : -2852.69581368828
## EM: Iteration : 17 || log-likelihood : -2849.93140687413
## EM: Iteration : 18 || log-likelihood : -2846.34467342533
## EM: Iteration : 19 || log-likelihood : -2843.82658697638
## EM: Iteration : 20 || log-likelihood : -2842.75921489778
## EM: Iteration : 21 || log-likelihood : -2842.2361309076
## EM: Iteration : 22 || log-likelihood : -2841.91343876731
## EM: Iteration : 23 || log-likelihood : -2841.66202744546
## EM: Iteration : 24 || log-likelihood : -2841.41784741157
## EM: Iteration : 25 || log-likelihood : -2841.14668922972
## EM: Iteration : 26 || log-likelihood : -2840.82033081985
## EM: Iteration : 27 || log-likelihood : -2840.39141033072
## EM: Iteration : 28 || log-likelihood : -2839.74532802897
## EM: Iteration : 29 || log-likelihood : -2838.62532237046
## EM: Iteration : 30 || log-likelihood : -2836.64319641069
## EM: Iteration : 31 || log-likelihood : -2833.87378876047
## EM: Iteration : 32 || log-likelihood : -2831.75584262499
## EM: Iteration : 33 || log-likelihood : -2831.16293539695
## EM: Iteration : 34 || log-likelihood : -2831.0646784204
## EM: Iteration : 35 || log-likelihood : -2831.06467491195
mrhlp$summary()
## ----------------------
## Fitted MRHLP model
## ----------------------
##
## MRHLP model with K = 5 regimes
##
## log-likelihood nu AIC BIC ICL
## -2831.065 98 -2929.065 -3149.921 -3149.146
##
## Clustering table:
## 1 2 3 4 5
## 100 120 200 100 150
##
##
## ------------------
## Regime 1 (K = 1):
##
## Regression coefficients:
##
## Beta(d = 1) Beta(d = 2) Beta(d = 3)
## 1 0.4466558 0.8104534 -2.36719
## X^1 -25.5100013 -20.5995360 32.75195
## X^2 413.8717640 498.0085618 -541.38904
## X^3 -1811.4612012 -2477.5546420 2523.64723
##
## Covariance matrix:
##
## 1.17712613 0.1114059 0.07303969
## 0.11140591 0.8394152 -0.02442220
## 0.07303969 -0.0244222 0.85240361
## ------------------
## Regime 2 (K = 2):
##
## Regression coefficients:
##
## Beta(d = 1) Beta(d = 2) Beta(d = 3)
## 1 21.30187 -4.108239 1.838238
## X^1 -199.86512 112.953325 112.257782
## X^2 905.60445 -449.623857 -493.914613
## X^3 -1316.42937 581.197948 694.872075
##
## Covariance matrix:
##
## 1.0409982 -0.180821350 0.137568024
## -0.1808214 1.042169409 0.009699162
## 0.1375680 0.009699162 0.754147599
## ------------------
## Regime 3 (K = 3):
##
## Regression coefficients:
##
## Beta(d = 1) Beta(d = 2) Beta(d = 3)
## 1 4.4721830 9.349642 6.349724
## X^1 0.7467282 -33.315977 17.837763
## X^2 -11.9302818 96.730621 -51.086769
## X^3 16.1571109 -85.951201 42.760070
##
## Covariance matrix:
##
## 1.02026230 -0.04094457 -0.02544812
## -0.04094457 1.15656511 0.02852275
## -0.02544812 0.02852275 0.99750511
## ------------------
## Regime 4 (K = 4):
##
## Regression coefficients:
##
## Beta(d = 1) Beta(d = 2) Beta(d = 3)
## 1 1267.288 -840.5119 -10.37768
## X^1 -5458.816 3613.7273 19.40201
## X^2 7813.122 -5184.1100 14.37103
## X^3 -3718.619 2475.7168 -29.55020
##
## Covariance matrix:
##
## 0.822157811 0.006792726 -0.03667011
## 0.006792726 1.093351047 -0.07477892
## -0.036670114 -0.074778924 0.85425249
## ------------------
## Regime 5 (K = 5):
##
## Regression coefficients:
##
## Beta(d = 1) Beta(d = 2) Beta(d = 3)
## 1 194.7894 12.88268 483.8383
## X^1 -658.4685 -45.73544 -1634.9482
## X^2 753.1086 61.92925 1858.1529
## X^3 -286.1078 -27.37495 -702.9064
##
## Covariance matrix:
##
## 1.1282728 0.25684915 0.02034990
## 0.2568491 1.21055927 0.04414336
## 0.0203499 0.04414336 0.77644297
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.