The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
MHMMR: Flexible and user-friendly probabilistic joint segmentation of multivariate time series (or multivariate structured longitudinal data) with regime changes by a multiple regression model governed by a hidden Markov process, fitted by the EM (Baum-Welch) algorithm.
It was written in R Markdown, using the knitr package for production.
See help(package="samurais")
for further details and references provided by citation("samurais")
.
mhmmr <- emMHMMR(multivtoydataset$x, multivtoydataset[,c("y1", "y2", "y3")],
K, p, variance_type, n_tries, max_iter, threshold, verbose)
## EM: Iteration : 1 || log-likelihood : -4425.29307889945
## EM: Iteration : 2 || log-likelihood : -2876.80418310609
## EM: Iteration : 3 || log-likelihood : -2876.69073409991
## EM: Iteration : 4 || log-likelihood : -2876.69055273039
mhmmr$summary()
## ----------------------
## Fitted MHMMR model
## ----------------------
##
## MHMMR model with K = 5 regimes
##
## log-likelihood nu AIC BIC
## -2876.691 114 -2990.691 -3247.605
##
## Clustering table:
## 1 2 3 4 5
## 100 120 200 100 150
##
##
## ------------------
## Regime 1 (K = 1):
##
## Regression coefficients:
##
## Beta(d = 1) Beta(d = 2) Beta(d = 3)
## 1 0.1595884 0.4201364 -1.9684451
## X^1 -1.7145325 11.7544140 -0.3006142
## X^2 10.6877091 -50.1877444 18.6445441
## X^3 2.3981783 -11.3098522 4.1479356
##
## Covariance matrix:
##
## 1.19029438 0.12929675 0.05476253
## 0.12929675 0.86375075 -0.04927306
## 0.05476253 -0.04927306 0.87780108
## ------------------
## Regime 2 (K = 2):
##
## Regression coefficients:
##
## Beta(d = 1) Beta(d = 2) Beta(d = 3)
## 1 5.15889 3.33862 10.451892
## X^1 15.56177 13.57089 -2.723323
## X^2 -23.21384 -21.11255 1.987222
## X^3 -19.14783 -17.33469 2.005997
##
## Covariance matrix:
##
## 1.0610207 -0.18930477 0.12778054
## -0.1893048 1.04687322 0.01497034
## 0.1277805 0.01497034 0.76036609
## ------------------
## Regime 3 (K = 3):
##
## Regression coefficients:
##
## Beta(d = 1) Beta(d = 2) Beta(d = 3)
## 1 4.795937 9.292094 6.795783
## X^1 -1.263151 -32.958041 15.068148
## X^2 -7.837624 96.000594 -45.446277
## X^3 13.420270 -85.462348 38.987695
##
## Covariance matrix:
##
## 1.02087804 -0.04142857 -0.02435233
## -0.04142857 1.15623166 0.02795799
## -0.02435233 0.02795799 0.99869029
## ------------------
## Regime 4 (K = 4):
##
## Regression coefficients:
##
## Beta(d = 1) Beta(d = 2) Beta(d = 3)
## 1 -7.021181 4.833214 -11.605950
## X^1 11.317211 -15.023656 24.674451
## X^2 3.910821 -3.672965 6.844172
## X^3 -10.872747 16.089951 -25.976569
##
## Covariance matrix:
##
## 0.87900680 -0.03091285 -0.03661533
## -0.03091285 1.11837399 -0.07481527
## -0.03661533 -0.07481527 0.85426254
## ------------------
## Regime 5 (K = 5):
##
## Regression coefficients:
##
## Beta(d = 1) Beta(d = 2) Beta(d = 3)
## 1 -0.8791755 -2.313216 -0.09479267
## X^1 5.9187901 5.861810 8.23344181
## X^2 3.5548127 3.717845 4.33488866
## X^3 -5.1244038 -5.553392 -7.97025598
##
## Covariance matrix:
##
## 1.13188125 0.25712861 0.02924967
## 0.25712861 1.21059097 0.04483453
## 0.02924967 0.04483453 0.79846413
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.