The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
dataPanelbeta <- dataPanelbeta[1:25,] #for the example only use part of the dataset
area <- max(dataPanelbeta[,2])
period <- max(dataPanelbeta[,3])
result<-Panel.beta(ydi~xdi1+xdi2,area=area, period=period ,iter.mcmc = 10000,thin=5,burn.in = 1000,data=dataPanelbeta)
#> Compiling model graph
#>    Resolving undeclared variables
#>    Allocating nodes
#> Graph information:
#>    Observed stochastic nodes: 25
#>    Unobserved stochastic nodes: 42
#>    Total graph size: 339
#> 
#> Initializing model
#> 
#> Compiling model graph
#>    Resolving undeclared variables
#>    Allocating nodes
#> Graph information:
#>    Observed stochastic nodes: 25
#>    Unobserved stochastic nodes: 42
#>    Total graph size: 339
#> 
#> Initializing model
#> 
#> Compiling model graph
#>    Resolving undeclared variables
#>    Allocating nodes
#> Graph information:
#>    Observed stochastic nodes: 25
#>    Unobserved stochastic nodes: 42
#>    Total graph size: 339
#> 
#> Initializing modelresult$Est
#>              MEAN         SD      2.5%       25%       50%       75%     97.5%
#> mu[1,1] 0.9713731 0.02328292 0.9079123 0.9625973 0.9777934 0.9868270 0.9960250
#> mu[2,1] 0.9569757 0.03324846 0.8755690 0.9460993 0.9657183 0.9787156 0.9926591
#> mu[3,1] 0.9393633 0.04957912 0.7970808 0.9236493 0.9520683 0.9707649 0.9901039
#> mu[4,1] 0.9658961 0.02798058 0.8913413 0.9560956 0.9737534 0.9846068 0.9950255
#> mu[5,1] 0.9385088 0.05338035 0.7846902 0.9230321 0.9543239 0.9729578 0.9901186
#> mu[1,2] 0.9701842 0.02503484 0.9044870 0.9614728 0.9766194 0.9862512 0.9955072
#> mu[2,2] 0.9652112 0.02802308 0.8904712 0.9554232 0.9725827 0.9833270 0.9942910
#> mu[3,2] 0.9181959 0.06386394 0.7433878 0.8940435 0.9361087 0.9601812 0.9858488
#> mu[4,2] 0.9763548 0.02105958 0.9189624 0.9700028 0.9827027 0.9903026 0.9969880
#> mu[5,2] 0.9424182 0.04372767 0.8352181 0.9278862 0.9531731 0.9697931 0.9897842
#> mu[1,3] 0.9687955 0.02724247 0.8923014 0.9611683 0.9762906 0.9867519 0.9958210
#> mu[2,3] 0.8727048 0.08015318 0.6633978 0.8365484 0.8907476 0.9288464 0.9713757
#> mu[3,3] 0.9589801 0.03034478 0.8803231 0.9463271 0.9666111 0.9799933 0.9936224
#> mu[4,3] 0.9557647 0.03383615 0.8688497 0.9429073 0.9652019 0.9791047 0.9935937
#> mu[5,3] 0.9257019 0.04910279 0.7971302 0.9066043 0.9372174 0.9590961 0.9849859
#> mu[1,4] 0.9538652 0.03615603 0.8566988 0.9403275 0.9632428 0.9784399 0.9931700
#> mu[2,4] 0.9392213 0.04329936 0.8217429 0.9241023 0.9499753 0.9683103 0.9885660
#> mu[3,4] 0.9344597 0.04617361 0.8124747 0.9169184 0.9454070 0.9661673 0.9876194
#> mu[4,4] 0.9724688 0.02626781 0.8988352 0.9651721 0.9801582 0.9885622 0.9965840
#> mu[5,4] 0.8539960 0.10516566 0.5752763 0.8125300 0.8838448 0.9258455 0.9687237
#> mu[1,5] 0.9656977 0.02847380 0.8953434 0.9565754 0.9734931 0.9845512 0.9953143
#> mu[2,5] 0.8897345 0.07813767 0.6765461 0.8600749 0.9112217 0.9437139 0.9776705
#> mu[3,5] 0.9598528 0.03131756 0.8717586 0.9484348 0.9682738 0.9808066 0.9937804
#> mu[4,5] 0.9330710 0.04980811 0.7949374 0.9141878 0.9453854 0.9670004 0.9890399
#> mu[5,5] 0.8682562 0.08506625 0.6421667 0.8302648 0.8900370 0.9289515 0.9685002y_dir<-dataPanelbeta[,1]
y_HB<-result$Est$MEAN
y<-as.data.frame(cbind(y_dir,y_HB))
summary(y)
#>      y_dir             y_HB       
#>  Min.   :0.3836   Min.   :0.8540  
#>  1st Qu.:0.9702   1st Qu.:0.9331  
#>  Median :1.0000   Median :0.9539  
#>  Mean   :0.9423   Mean   :0.9399  
#>  3rd Qu.:1.0000   3rd Qu.:0.9657  
#>  Max.   :1.0000   Max.   :0.9764MSE_dir<-dataPanelbeta[,4]
MSE<-as.data.frame(cbind(MSE_dir, MSE_HB))
summary(MSE)
#>     MSE_dir              MSE_HB         
#>  Min.   :0.0004401   Min.   :0.0004435  
#>  1st Qu.:0.0036464   1st Qu.:0.0007853  
#>  Median :0.0228563   Median :0.0013073  
#>  Mean   :0.0256965   Mean   :0.0024762  
#>  3rd Qu.:0.0428368   3rd Qu.:0.0024808  
#>  Max.   :0.0887137   Max.   :0.0110598These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.