The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
dataBeta$CV <- sqrt(dataBeta$vardir)/dataBeta$y
explore(y~X1+X2, CV = "CV", data = dataBeta, normality = TRUE)
#> y X1 X2
#> Min. 0.002826007 0.04205953 0.02461368
#> 1st Qu. 0.677417203 0.34818477 0.20900053
#> Median 0.986658040 0.58338771 0.39409355
#> Mean 0.786269096 0.57240016 0.43864087
#> 3rd Qu. 0.999116512 0.85933934 0.73765722
#> Max. 1.000000000 0.99426978 0.96302423
#> NA 0.000000000 0.00000000 0.00000000
#>
#> Normality test for y :
#> Decision: Data do NOT follow normal distribution, with p.value = 0 < 0.05
Trace Plot, Density Plot, ACF Plot, R-Hat Plot
#>
#> [[2]]
#>
#> [[3]]
#>
#> [[4]]
model$Est_area
#> Mean SD 2.5% 25% 50% 75% 97.5%
#> 1 1.2179303 0.08367189 1.0199331 1.1771017 1.2359316 1.2786094 1.321750
#> 2 0.9663316 0.10936126 0.7284934 0.9008660 0.9787452 1.0433653 1.146264
#> 3 1.2811164 0.10489759 1.0422264 1.2281014 1.3043557 1.3596630 1.415032
#> 4 0.9749039 0.06918723 0.8166622 0.9359717 0.9910931 1.0249401 1.068415
#> 5 0.9812609 0.16483636 0.6162753 0.8838426 0.9916185 1.0920329 1.273873
#> 6 1.4889919 0.13338164 1.1885749 1.4149461 1.5170100 1.5832349 1.669097
#> 7 0.8246541 0.17429089 0.5025987 0.7020238 0.8255332 0.9514103 1.143805
#> 8 0.8481751 0.15196815 0.5238050 0.7471580 0.8583737 0.9609586 1.120119
#> 9 0.7298027 0.18379549 0.3490142 0.6115407 0.7395244 0.8513946 1.077212
#> 10 0.7941518 0.06083836 0.6447614 0.7591267 0.8054407 0.8369791 0.880041
CV_area <- (model$Est_area$SD)/(model$Est_area$Mean)*100
MSE_area <- model$Est_area$SD^2
summary(cbind(CV_area,MSE_area))
#> CV_area MSE_area
#> Min. : 6.870 Min. :0.003701
#> 1st Qu.: 7.793 1st Qu.:0.008002
#> Median :10.138 Median :0.014875
#> Mean :13.113 Mean :0.017067
#> 3rd Qu.:17.637 3rd Qu.:0.026152
#> Max. :25.184 Max. :0.033781
model$Est_area
#> Mean SD 2.5% 25% 50% 75% 97.5%
#> 1 1.2179303 0.08367189 1.0199331 1.1771017 1.2359316 1.2786094 1.321750
#> 2 0.9663316 0.10936126 0.7284934 0.9008660 0.9787452 1.0433653 1.146264
#> 3 1.2811164 0.10489759 1.0422264 1.2281014 1.3043557 1.3596630 1.415032
#> 4 0.9749039 0.06918723 0.8166622 0.9359717 0.9910931 1.0249401 1.068415
#> 5 0.9812609 0.16483636 0.6162753 0.8838426 0.9916185 1.0920329 1.273873
#> 6 1.4889919 0.13338164 1.1885749 1.4149461 1.5170100 1.5832349 1.669097
#> 7 0.8246541 0.17429089 0.5025987 0.7020238 0.8255332 0.9514103 1.143805
#> 8 0.8481751 0.15196815 0.5238050 0.7471580 0.8583737 0.9609586 1.120119
#> 9 0.7298027 0.18379549 0.3490142 0.6115407 0.7395244 0.8513946 1.077212
#> 10 0.7941518 0.06083836 0.6447614 0.7591267 0.8054407 0.8369791 0.880041
model$sub_randeff
#> u_mean
#> u[1] 0.119715995
#> u[2] -0.056201482
#> u[3] 0.227430412
#> u[4] 0.226823593
#> u[5] -0.536328040
#> u[6] 0.301095852
#> u[7] 0.001988169
#> u[8] 0.168360702
#> u[9] 0.364382150
#> u[10] 0.525992674
#> u[11] 0.123937310
#> u[12] 0.211898157
#> u[13] -0.200098286
#> u[14] 0.617127849
#> u[15] -0.905695714
#> u[16] 0.037466149
#> u[17] 0.876489893
#> u[18] -0.388672505
#> u[19] -0.999258002
#> u[20] 0.289406088
#> u[21] -0.024721479
#> u[22] 0.288812727
#> u[23] -0.461070642
#> u[24] -0.288971985
#> u[25] -0.684000074
#> u[26] -0.608315501
#> u[27] 0.408009283
#> u[28] 0.501033723
#> u[29] -0.475810178
#> u[30] 0.341399077
CV_sub <- (model$Est_sub$SD)/(model$Est_sub$Mean)*100
MSE_sub <- model$Est_sub$SD^2
summary(cbind(CV_sub,MSE_sub))
#> CV_sub MSE_sub
#> Min. : 6.691 Min. :0.003821
#> 1st Qu.: 9.642 1st Qu.:0.007333
#> Median :15.050 Median :0.015436
#> Mean :19.198 Mean :0.018663
#> 3rd Qu.:26.776 3rd Qu.:0.029237
#> Max. :52.603 Max. :0.048170
Save the output of Subarea estimation and the Direct Estimation (y)
df <- data.frame(
area = seq_along(model$Est_sub$Mean),
direct = dataBeta$y,
mean_estimate = model$Est_sub$Mean
)
Area Mean Estimation
ggplot(df, aes(x = area)) +
geom_point(aes(y = direct), size = 2, colour = "#388894", alpha = 0.6) + # scatter points
geom_point(aes(y = mean_estimate), size = 2, colour = "#2b707a") + # scatter points
geom_line(aes(y = direct), linewidth = 1, colour = "#388894", alpha = 0.6) + # line connecting points
geom_line(aes(y = mean_estimate), linewidth = 1, colour = "#2b707a") + # line connecting points
labs(
title = "Scatter + Line Plot of Estimated Means",
x = "Area Index",
y = "Value"
)
ggplot(df, aes(x = , direct, y = mean_estimate)) +
geom_point( size = 2, colour = "#2b707a") +
geom_abline(intercept = 0, slope = 1, color = "gray40", linetype = "dashed") +
geom_smooth(method = "lm", color = "#2b707a", se = FALSE) +
ylim(0, 1) +
labs(
title = "Scatter Plot of Direct vs Model-Based",
x = "Direct",
y = "Model Based"
)
Combine the CV of direct estimation and CV from output
df_cv <- data.frame(
direct = sqrt(dataBeta$vardir)/dataBeta$y*100,
cv_estimate = CV_sub
)
df_cv <- df_cv[order(df_cv$direct), ]
df_cv$area <- seq_along(dataBeta$y)
Relative Standard Error of Subarea Mean Estimation
ggplot(df_cv, aes(x = area)) +
geom_point(aes(y = direct), size = 2, colour = "#388894", alpha = 0.5) +
geom_point(aes(y = cv_estimate), size = 2, colour = "#2b707a") +
ylim(0, 100) +
labs(
title = "Scatter Plot of Direct vs Model-Based CV",
x = "Area",
y = "CV (%)"
)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.