The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
model <- betaTF(y~X1+X2,area="codearea",weight="w",iter.mcmc = 10000, burn.in = 3000, iter.update = 5, thin = 10, data=dataBeta)
#>
#> SAMPLING FOR MODEL 'saeHB_TF_beta' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 0.000133 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 1.33 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 10000 [ 0%] (Warmup)
#> Chain 1: Iteration: 1000 / 10000 [ 10%] (Warmup)
#> Chain 1: Iteration: 2000 / 10000 [ 20%] (Warmup)
#> Chain 1: Iteration: 3000 / 10000 [ 30%] (Warmup)
#> Chain 1: Iteration: 3001 / 10000 [ 30%] (Sampling)
#> Chain 1: Iteration: 4000 / 10000 [ 40%] (Sampling)
#> Chain 1: Iteration: 5000 / 10000 [ 50%] (Sampling)
#> Chain 1: Iteration: 6000 / 10000 [ 60%] (Sampling)
#> Chain 1: Iteration: 7000 / 10000 [ 70%] (Sampling)
#> Chain 1: Iteration: 8000 / 10000 [ 80%] (Sampling)
#> Chain 1: Iteration: 9000 / 10000 [ 90%] (Sampling)
#> Chain 1: Iteration: 10000 / 10000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 4.239 seconds (Warm-up)
#> Chain 1: 13.986 seconds (Sampling)
#> Chain 1: 18.225 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'saeHB_TF_beta' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 6.7e-05 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.67 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 10000 [ 0%] (Warmup)
#> Chain 1: Iteration: 1000 / 10000 [ 10%] (Warmup)
#> Chain 1: Iteration: 2000 / 10000 [ 20%] (Warmup)
#> Chain 1: Iteration: 3000 / 10000 [ 30%] (Warmup)
#> Chain 1: Iteration: 3001 / 10000 [ 30%] (Sampling)
#> Chain 1: Iteration: 4000 / 10000 [ 40%] (Sampling)
#> Chain 1: Iteration: 5000 / 10000 [ 50%] (Sampling)
#> Chain 1: Iteration: 6000 / 10000 [ 60%] (Sampling)
#> Chain 1: Iteration: 7000 / 10000 [ 70%] (Sampling)
#> Chain 1: Iteration: 8000 / 10000 [ 80%] (Sampling)
#> Chain 1: Iteration: 9000 / 10000 [ 90%] (Sampling)
#> Chain 1: Iteration: 10000 / 10000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 3.67 seconds (Warm-up)
#> Chain 1: 12.25 seconds (Sampling)
#> Chain 1: 15.92 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'saeHB_TF_beta' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 6.4e-05 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.64 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 10000 [ 0%] (Warmup)
#> Chain 1: Iteration: 1000 / 10000 [ 10%] (Warmup)
#> Chain 1: Iteration: 2000 / 10000 [ 20%] (Warmup)
#> Chain 1: Iteration: 3000 / 10000 [ 30%] (Warmup)
#> Chain 1: Iteration: 3001 / 10000 [ 30%] (Sampling)
#> Chain 1: Iteration: 4000 / 10000 [ 40%] (Sampling)
#> Chain 1: Iteration: 5000 / 10000 [ 50%] (Sampling)
#> Chain 1: Iteration: 6000 / 10000 [ 60%] (Sampling)
#> Chain 1: Iteration: 7000 / 10000 [ 70%] (Sampling)
#> Chain 1: Iteration: 8000 / 10000 [ 80%] (Sampling)
#> Chain 1: Iteration: 9000 / 10000 [ 90%] (Sampling)
#> Chain 1: Iteration: 10000 / 10000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 3.339 seconds (Warm-up)
#> Chain 1: 9.313 seconds (Sampling)
#> Chain 1: 12.652 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'saeHB_TF_beta' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 0.0002 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 2 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 10000 [ 0%] (Warmup)
#> Chain 1: Iteration: 1000 / 10000 [ 10%] (Warmup)
#> Chain 1: Iteration: 2000 / 10000 [ 20%] (Warmup)
#> Chain 1: Iteration: 3000 / 10000 [ 30%] (Warmup)
#> Chain 1: Iteration: 3001 / 10000 [ 30%] (Sampling)
#> Chain 1: Iteration: 4000 / 10000 [ 40%] (Sampling)
#> Chain 1: Iteration: 5000 / 10000 [ 50%] (Sampling)
#> Chain 1: Iteration: 6000 / 10000 [ 60%] (Sampling)
#> Chain 1: Iteration: 7000 / 10000 [ 70%] (Sampling)
#> Chain 1: Iteration: 8000 / 10000 [ 80%] (Sampling)
#> Chain 1: Iteration: 9000 / 10000 [ 90%] (Sampling)
#> Chain 1: Iteration: 10000 / 10000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 3.067 seconds (Warm-up)
#> Chain 1: 8.547 seconds (Sampling)
#> Chain 1: 11.614 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'saeHB_TF_beta' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 6.5e-05 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.65 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 10000 [ 0%] (Warmup)
#> Chain 1: Iteration: 1000 / 10000 [ 10%] (Warmup)
#> Chain 1: Iteration: 2000 / 10000 [ 20%] (Warmup)
#> Chain 1: Iteration: 3000 / 10000 [ 30%] (Warmup)
#> Chain 1: Iteration: 3001 / 10000 [ 30%] (Sampling)
#> Chain 1: Iteration: 4000 / 10000 [ 40%] (Sampling)
#> Chain 1: Iteration: 5000 / 10000 [ 50%] (Sampling)
#> Chain 1: Iteration: 6000 / 10000 [ 60%] (Sampling)
#> Chain 1: Iteration: 7000 / 10000 [ 70%] (Sampling)
#> Chain 1: Iteration: 8000 / 10000 [ 80%] (Sampling)
#> Chain 1: Iteration: 9000 / 10000 [ 90%] (Sampling)
#> Chain 1: Iteration: 10000 / 10000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 3.004 seconds (Warm-up)
#> Chain 1: 6.211 seconds (Sampling)
#> Chain 1: 9.215 seconds (Total)
#> Chain 1:
model$Est_sub
#> Mean SD 2.5% 25% 50% 75% 97.5%
#> mu[1] 0.9053967 0.08195363 0.67851291 0.8818738 0.9299119 0.9603876 0.9873144
#> mu[2] 0.8926761 0.08760498 0.67347240 0.8612844 0.9154443 0.9519162 0.9888949
#> mu[3] 0.8868311 0.08887440 0.64658461 0.8512343 0.9104661 0.9473585 0.9866026
#> mu[4] 0.8868978 0.08701021 0.64662824 0.8527519 0.9117412 0.9504478 0.9830285
#> mu[5] 0.6271048 0.18100766 0.25176080 0.5057484 0.6404679 0.7655775 0.9301059
#> mu[6] 0.8216952 0.12028181 0.52548477 0.7697127 0.8461044 0.9063645 0.9688645
#> mu[7] 0.8948383 0.07950368 0.68129007 0.8603116 0.9158148 0.9522523 0.9866266
#> mu[8] 0.8624380 0.10544918 0.58550770 0.8165252 0.8922498 0.9370547 0.9830706
#> mu[9] 0.8799658 0.09982128 0.60810802 0.8445298 0.9072289 0.9476080 0.9844358
#> mu[10] 0.9123285 0.07908197 0.70933065 0.8852371 0.9348038 0.9624647 0.9908243
#> mu[11] 0.8720506 0.09865071 0.62345252 0.8278944 0.8967816 0.9399233 0.9846169
#> mu[12] 0.9053396 0.07518627 0.70027774 0.8769720 0.9276158 0.9589379 0.9876333
#> mu[13] 0.6971537 0.16602980 0.34038058 0.5873610 0.7245334 0.8371638 0.9402407
#> mu[14] 0.8188202 0.13481296 0.44575324 0.7671898 0.8571600 0.9104273 0.9692113
#> mu[15] 0.4465486 0.21414551 0.10179592 0.2822292 0.4195753 0.6075303 0.8796106
#> mu[16] 0.8327054 0.11914243 0.52509691 0.7753740 0.8629299 0.9182501 0.9780020
#> mu[17] 0.9153811 0.07127910 0.74311794 0.8903543 0.9354156 0.9639012 0.9890464
#> mu[18] 0.7870216 0.14488772 0.43461564 0.7075130 0.8188011 0.8969234 0.9718825
#> mu[19] 0.3788355 0.21580093 0.07319142 0.2032868 0.3426698 0.5343229 0.8426713
#> mu[20] 0.8151413 0.12778213 0.50495844 0.7459182 0.8474112 0.9077456 0.9701964
#> mu[21] 0.5964160 0.18134710 0.20502766 0.4747901 0.6073351 0.7375049 0.8969731
#> mu[22] 0.8024685 0.12713643 0.49016011 0.7406594 0.8290650 0.8967925 0.9723601
#> mu[23] 0.7374890 0.16106601 0.34383560 0.6384648 0.7597792 0.8628978 0.9563236
#> mu[24] 0.6259265 0.17771714 0.24697717 0.4966795 0.6394002 0.7650359 0.9147318
#> mu[25] 0.4808298 0.20884347 0.12687534 0.3067006 0.4657572 0.6481988 0.8781021
#> mu[26] 0.4268665 0.19737120 0.12287057 0.2783191 0.4060867 0.5622995 0.8280090
#> mu[27] 0.6189552 0.18567270 0.21853089 0.4954805 0.6423776 0.7596318 0.9142918
#> mu[28] 0.9296569 0.05702640 0.77986863 0.9095508 0.9459108 0.9689667 0.9900320
#> mu[29] 0.8437936 0.11985869 0.53266660 0.7926927 0.8766417 0.9279530 0.9840234
#> mu[30] 0.8589059 0.10546324 0.57483154 0.8114975 0.8926066 0.9341297 0.9792554
model$Est_area
#> Mean SD 2.5% 25% 50% 75% 97.5%
#> 1 1.2177115 0.08536626 1.0181561 1.1820636 1.2372036 1.2765637 1.3239864
#> 2 0.9708202 0.10644154 0.7296944 0.9083033 0.9816517 1.0510719 1.1291948
#> 3 1.2879826 0.10589976 1.0218098 1.2365061 1.3076122 1.3671666 1.4216273
#> 4 0.9760982 0.07245221 0.7960258 0.9429232 0.9915813 1.0288044 1.0688764
#> 5 0.9770270 0.16822147 0.6173117 0.8589678 0.9907493 1.0999273 1.2592528
#> 6 1.4803831 0.13373837 1.1445366 1.4061231 1.5037906 1.5816653 1.6666454
#> 7 0.8182944 0.18003381 0.4717322 0.6963216 0.8192384 0.9475808 1.1436643
#> 8 0.8426272 0.14515393 0.5350700 0.7483065 0.8512957 0.9512469 1.0822125
#> 9 0.6995611 0.18666905 0.3323952 0.5709749 0.6960454 0.8297694 1.0774089
#> 10 0.7984735 0.06038606 0.6443066 0.7691049 0.8108283 0.8424015 0.8804124
model$area_randeff
#> f_mean
#> f[1] 0.255401039
#> f[2] 0.008793188
#> f[3] 0.539419782
#> f[4] 0.817424298
#> f[5] -0.401040333
#> f[6] 0.528203138
#> f[7] -0.765338417
#> f[8] -0.365873029
#> f[9] -1.014203212
#> f[10] 0.386653135
model$sub_randeff
#> u_mean
#> u[1] 0.18075235
#> u[2] -0.05199439
#> u[3] 0.24953733
#> u[4] 0.21384398
#> u[5] -0.54239478
#> u[6] 0.27412731
#> u[7] -0.07659570
#> u[8] 0.19446461
#> u[9] 0.33980887
#> u[10] 0.59489277
#> u[11] 0.06774146
#> u[12] 0.23690097
#> u[13] -0.19702884
#> u[14] 0.67010373
#> u[15] -0.90804435
#> u[16] 0.04379546
#> u[17] 0.94831480
#> u[18] -0.42631628
#> u[19] -1.11326722
#> u[20] 0.26048696
#> u[21] 0.04943089
#> u[22] 0.36841040
#> u[23] -0.45954833
#> u[24] -0.32354465
#> u[25] -0.81566715
#> u[26] -0.63627854
#> u[27] 0.41708341
#> u[28] 0.51890820
#> u[29] -0.48195210
#> u[30] 0.33018644
Trace Plot, Density Plot, ACF Plot, R-Hat Plot
#>
#> [[2]]
#>
#> [[3]]
#>
#> [[4]]
CV_sub <- (model$Est_sub$SD)/(model$Est_sub$Mean)*100
MSE_sub <- model$Est_sub$SD^2
summary(cbind(CV_sub,MSE_sub))
#> CV_sub MSE_sub
#> Min. : 6.134 Min. :0.003252
#> 1st Qu.: 9.866 1st Qu.:0.007731
#> Median :14.473 Median :0.014417
#> Mean :19.770 Mean :0.019109
#> 3rd Qu.:27.248 3rd Qu.:0.030579
#> Max. :56.964 Max. :0.046570
CV_area <- (model$Est_area$SD)/(model$Est_area$Mean)*100
MSE_area <- model$Est_area$SD^2
summary(cbind(CV_area,MSE_area))
#> CV_area MSE_area
#> Min. : 7.010 Min. :0.003646
#> 1st Qu.: 7.728 1st Qu.:0.008269
#> Median : 9.999 Median :0.014608
#> Mean :13.334 Mean :0.017324
#> 3rd Qu.:17.224 3rd Qu.:0.026491
#> Max. :26.684 Max. :0.034845
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.