The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
library(saeHB.ME.beta)
data("dataHBMEbeta")
<- meHBbeta(Y~x1+x2, var.x = c("v.x1","v.x2"),
example iter.update = 3, iter.mcmc = 10000,
thin = 3, burn.in = 1000, data = dataHBMEbeta)
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 30
#> Unobserved stochastic nodes: 126
#> Total graph size: 623
#>
#> Initializing model
#>
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 30
#> Unobserved stochastic nodes: 126
#> Total graph size: 623
#>
#> Initializing model
#>
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 30
#> Unobserved stochastic nodes: 126
#> Total graph size: 623
#>
#> Initializing model
$Est
example#> mean sd 2.5% 25% 50% 75% 97.5%
#> mu[1] 0.8416853 0.07503160 0.6663454 0.8021204 0.8539008 0.8957161 0.9512338
#> mu[2] 0.8463504 0.08074311 0.6518505 0.8053343 0.8611295 0.9047494 0.9569837
#> mu[3] 0.8439023 0.07723618 0.6550671 0.8034900 0.8586887 0.8991897 0.9504220
#> mu[4] 0.8235074 0.08840573 0.6013875 0.7798147 0.8405103 0.8869287 0.9461643
#> mu[5] 0.8459879 0.07871477 0.6571124 0.8041918 0.8598413 0.9037009 0.9549178
#> mu[6] 0.8381432 0.08121686 0.6410625 0.7947501 0.8526293 0.8967996 0.9529408
#> mu[7] 0.7641579 0.12265984 0.4619847 0.7009210 0.7881012 0.8536115 0.9314142
#> mu[8] 0.8478323 0.07618529 0.6669401 0.8065519 0.8602505 0.9041729 0.9564811
#> mu[9] 0.8426264 0.08422705 0.6367777 0.7998750 0.8583432 0.9037904 0.9593601
#> mu[10] 0.8437598 0.07836709 0.6511212 0.8035820 0.8577890 0.9000326 0.9516863
#> mu[11] 0.8444968 0.08173540 0.6435679 0.8035870 0.8609307 0.9034221 0.9542632
#> mu[12] 0.8358571 0.08391067 0.6276648 0.7947853 0.8519023 0.8950722 0.9510740
#> mu[13] 0.8467580 0.07764394 0.6620718 0.8042278 0.8606256 0.9032737 0.9554820
#> mu[14] 0.7951709 0.09998640 0.5523233 0.7409157 0.8117109 0.8687643 0.9377560
#> mu[15] 0.8404791 0.07985322 0.6497380 0.7985050 0.8539948 0.8975110 0.9516097
#> mu[16] 0.8452365 0.07863805 0.6510475 0.8039895 0.8592398 0.9031062 0.9542445
#> mu[17] 0.7635485 0.11793018 0.4725584 0.6988790 0.7870598 0.8496561 0.9270834
#> mu[18] 0.8419619 0.08750373 0.6243736 0.8007166 0.8592568 0.9030673 0.9581212
#> mu[19] 0.8558909 0.07420725 0.6796130 0.8189064 0.8705806 0.9096122 0.9545350
#> mu[20] 0.8333575 0.08310627 0.6308405 0.7912695 0.8483918 0.8938964 0.9500743
#> mu[21] 0.8433135 0.08358542 0.6392663 0.8045128 0.8603984 0.9035820 0.9538114
#> mu[22] 0.7981174 0.10398068 0.5472636 0.7430299 0.8170609 0.8743005 0.9451216
#> mu[23] 0.8425901 0.08423087 0.6275140 0.7988084 0.8600944 0.9035623 0.9564442
#> mu[24] 0.8036584 0.10240068 0.5453360 0.7494526 0.8223033 0.8773301 0.9435467
#> mu[25] 0.8437857 0.07852212 0.6534682 0.8022027 0.8591593 0.9019915 0.9530249
#> mu[26] 0.8248564 0.08662463 0.6053740 0.7792868 0.8415287 0.8880432 0.9457300
#> mu[27] 0.7754028 0.11291888 0.4985139 0.7185032 0.7958109 0.8567496 0.9330853
#> mu[28] 0.8456545 0.08025105 0.6439812 0.8069383 0.8608143 0.9028653 0.9553957
#> mu[29] 0.7903936 0.10536840 0.5342441 0.7352144 0.8110449 0.8683767 0.9377924
#> mu[30] 0.8442913 0.09857787 0.5885866 0.7996503 0.8684811 0.9131264 0.9695456
$coefficient
example#> Mean SD 2.5% 25% 50% 75% 97.5%
#> b[0] 1.65485883 0.2397138 1.1721340 1.49785315 1.65687373 1.8181941 2.1259435
#> b[1] 0.06602099 0.2130744 -0.3334683 -0.08100469 0.06366662 0.2099927 0.4784728
#> b[2] 0.02207541 0.1244913 -0.2189939 -0.06144032 0.02164405 0.1048711 0.2743714
$refvar
example#> [1] 0.3233804
=example$Est$sd^2 MSE_HBMEbeta
=sqrt(MSE_HBMEbeta)/example$Est$mean*100 RSE_HBMEbeta
=dataHBMEbeta[,1]
Y_direct=dataHBMEbeta[,6]
MSE_direct=sqrt(MSE_direct)/Y_direct*100 RSE_direct
=example$Est$mean
Y_HBMEbeta=as.data.frame(cbind(Y_direct,Y_HBMEbeta))
Ysummary(Y)
#> Y_direct Y_HBMEbeta
#> Min. :1.50e-06 Min. :0.7635
#> 1st Qu.:9.99e-01 1st Qu.:0.8238
#> Median :1.00e+00 Median :0.8423
#> Mean :8.64e-01 Mean :0.8284
#> 3rd Qu.:1.00e+00 3rd Qu.:0.8444
#> Max. :1.00e+00 Max. :0.8559
=as.data.frame(cbind(MSE_direct,MSE_HBMEbeta))
MSEsummary(MSE)
#> MSE_direct MSE_HBMEbeta
#> Min. :1.500e-07 Min. :0.005507
#> 1st Qu.:3.306e-05 1st Qu.:0.006187
#> Median :5.868e-04 Median :0.006947
#> Mean :7.635e-03 Mean :0.007938
#> 3rd Qu.:8.967e-03 3rd Qu.:0.009242
#> Max. :5.569e-02 Max. :0.015045
=as.data.frame(cbind(RSE_direct,RSE_HBMEbeta))
RSEsummary(RSE)
#> RSE_direct RSE_HBMEbeta
#> Min. : 0 Min. : 8.670
#> 1st Qu.: 1 1st Qu.: 9.305
#> Median : 2 Median : 9.942
#> Mean : 175957 Mean :10.698
#> 3rd Qu.: 11 3rd Qu.:11.441
#> Max. :5247828 Max. :16.052
<- meHBbeta(Y~x1+x2+x3, var.x = c("v.x1","v.x2"),
example_mix iter.update = 3, iter.mcmc = 10000,
thin = 3, burn.in = 1000, data = dataHBMEbeta)
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 30
#> Unobserved stochastic nodes: 127
#> Total graph size: 717
#>
#> Initializing model
#>
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 30
#> Unobserved stochastic nodes: 127
#> Total graph size: 717
#>
#> Initializing model
#>
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 30
#> Unobserved stochastic nodes: 127
#> Total graph size: 717
#>
#> Initializing model
$Est
example_mix#> mean sd 2.5% 25% 50% 75% 97.5%
#> mu[1] 0.8438472 0.07722785 0.6564269 0.8042641 0.8577980 0.8992938 0.9501498
#> mu[2] 0.8596662 0.07557709 0.6720641 0.8220169 0.8742556 0.9140819 0.9627313
#> mu[3] 0.8547806 0.07612989 0.6633313 0.8153258 0.8690362 0.9092639 0.9604253
#> mu[4] 0.8370814 0.08439967 0.6322903 0.7934238 0.8527133 0.8983265 0.9545385
#> mu[5] 0.8782910 0.07386179 0.6834716 0.8472002 0.8946201 0.9293734 0.9704964
#> mu[6] 0.8377267 0.08138082 0.6426118 0.7955398 0.8518593 0.8979894 0.9526109
#> mu[7] 0.7247963 0.13053092 0.4234166 0.6509727 0.7474068 0.8196420 0.9169745
#> mu[8] 0.8488618 0.07823629 0.6593455 0.8087150 0.8641079 0.9054945 0.9579902
#> mu[9] 0.8244094 0.09328407 0.5984369 0.7774757 0.8433142 0.8912295 0.9512582
#> mu[10] 0.8445639 0.08054587 0.6527087 0.8038852 0.8589208 0.9024319 0.9557523
#> mu[11] 0.8387194 0.08236559 0.6321406 0.7950637 0.8525188 0.8991819 0.9552008
#> mu[12] 0.8729207 0.07410988 0.6828150 0.8400825 0.8887964 0.9251204 0.9682803
#> mu[13] 0.8403636 0.08041833 0.6425800 0.7990467 0.8552089 0.8981045 0.9554823
#> mu[14] 0.7719146 0.10374423 0.5191747 0.7164453 0.7909995 0.8465631 0.9245720
#> mu[15] 0.8543727 0.07433915 0.6753214 0.8160795 0.8680057 0.9086660 0.9568454
#> mu[16] 0.8187067 0.08823105 0.6162447 0.7696732 0.8328894 0.8839035 0.9466283
#> mu[17] 0.8196221 0.10742766 0.5431860 0.7701667 0.8435198 0.8967238 0.9555676
#> mu[18] 0.8465896 0.08407211 0.6426450 0.8037892 0.8629280 0.9060966 0.9605002
#> mu[19] 0.8341665 0.08116591 0.6390407 0.7904435 0.8484006 0.8938307 0.9489397
#> mu[20] 0.8423202 0.08403403 0.6385869 0.8003616 0.8595833 0.9043118 0.9537410
#> mu[21] 0.8768050 0.07499803 0.6905004 0.8411294 0.8935940 0.9301278 0.9713527
#> mu[22] 0.8207075 0.09980845 0.5702020 0.7693380 0.8423226 0.8935895 0.9540973
#> mu[23] 0.8409029 0.08530114 0.6303807 0.7987527 0.8567405 0.9009653 0.9575608
#> mu[24] 0.7943102 0.10319248 0.5435801 0.7385560 0.8151732 0.8688209 0.9415578
#> mu[25] 0.8682000 0.07214065 0.6828236 0.8338007 0.8823259 0.9201328 0.9646815
#> mu[26] 0.7945181 0.09280405 0.5733252 0.7447108 0.8084101 0.8635545 0.9317437
#> mu[27] 0.7341388 0.12619341 0.4257459 0.6677606 0.7557034 0.8275831 0.9156738
#> mu[28] 0.8723977 0.07573922 0.6785626 0.8404803 0.8902613 0.9250844 0.9666099
#> mu[29] 0.7750740 0.10883178 0.5151701 0.7169573 0.7930869 0.8546596 0.9313368
#> mu[30] 0.8345906 0.10640752 0.5588260 0.7850818 0.8569105 0.9091802 0.9717777
$coefficient
example_mix#> Mean SD 2.5% 25% 50% 75%
#> b[0] 1.321988106 0.2966870 0.7379480 1.12115821 1.32322839 1.52435384
#> b[1] 0.046397710 0.2236702 -0.3877839 -0.10260848 0.04411156 0.19258886
#> b[2] 0.008715332 0.1296287 -0.2407654 -0.07631908 0.01056678 0.09321969
#> b[3] 0.750751276 0.4451693 -0.1283277 0.45004538 0.74731428 1.05556146
#> 97.5%
#> b[0] 1.9026168
#> b[1] 0.4931409
#> b[2] 0.2645530
#> b[3] 1.6151043
$refvar
example_mix#> [1] 0.3065507
=example_mix$Est$sd^2 MSE_HBMEbeta_mix
=sqrt(MSE_HBMEbeta_mix)/example_mix$Est$mean*100 RSE_HBMEbeta_mix
=example_mix$Est$mean
Y_HBMEbeta_mix=as.data.frame(cbind(Y_direct,Y_HBMEbeta_mix))
Y_mixsummary(Y)
#> Y_direct Y_HBMEbeta
#> Min. :1.50e-06 Min. :0.7635
#> 1st Qu.:9.99e-01 1st Qu.:0.8238
#> Median :1.00e+00 Median :0.8423
#> Mean :8.64e-01 Mean :0.8284
#> 3rd Qu.:1.00e+00 3rd Qu.:0.8444
#> Max. :1.00e+00 Max. :0.8559
=as.data.frame(cbind(MSE_direct,MSE_HBMEbeta_mix))
MSE_mixsummary(MSE_mix)
#> MSE_direct MSE_HBMEbeta_mix
#> Min. :1.500e-07 Min. :0.005204
#> 1st Qu.:3.306e-05 1st Qu.:0.005838
#> Median :5.868e-04 Median :0.006923
#> Mean :7.635e-03 Mean :0.008075
#> 3rd Qu.:8.967e-03 3rd Qu.:0.009647
#> Max. :5.569e-02 Max. :0.017038
=as.data.frame(cbind(RSE_direct,RSE_HBMEbeta_mix))
RSE_mixsummary(RSE_mix)
#> RSE_direct RSE_HBMEbeta_mix
#> Min. : 0 Min. : 8.309
#> 1st Qu.: 1 1st Qu.: 8.968
#> Median : 2 Median : 9.876
#> Mean : 175957 Mean :10.773
#> 3rd Qu.: 11 3rd Qu.:12.041
#> Max. :5247828 Max. :18.009
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.