The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

sae.prop

Implements Additive Logistic Transformation (alr) for Small Area Estimation under Fay Herriot Model. Small Area Estimation is used to borrow strength from auxiliary variables to improve the effectiveness of a domain sample size. This package uses Empirical Best Linear Unbiased Prediction (EBLUP) estimator. The Additive Logistic Transformation (alr) are based on transformation by Aitchison J (1986). The covariance matrix for multivariate application is base on covariance matrix used by Esteban M, Lombardía M, López-Vizcaíno E, Morales D, and Pérez A doi:10.1007/s11749-019-00688-w. The non-sampled models are modified area-level models based on models proposed by Anisa R, Kurnia A, and Indahwati I doi:10.9790/5728-10121519, with univariate model using model-3, and multivariate model using model-1. The MSE are estimated using Parametric Bootstrap approach. For non-sampled cases, MSE are estimated using modified approach proposed by Haris F and Ubaidillah A doi:10.4108/eai.2-8-2019.2290339.

Authors

M. Rijalus Sholihin, Cucu Sumarni

Maintainer

M. Rijalus Sholihin 221810400@stis.ac.id

Installation

You can install the released version of sae.prop from CRAN with:

install.packages("sae.prop")

Functions

References

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.