| Version: | 0.4.3 | 
| Title: | Spatial Association Between Regionalizations | 
| Description: | Calculates a degree of spatial association between regionalizations or categorical maps using the information-theoretical V-measure (Nowosad and Stepinski (2018) <doi:10.1080/13658816.2018.1511794>). It also offers an R implementation of the MapCurve method (Hargrove et al. (2006) <doi:10.1007/s10109-006-0025-x>). | 
| License: | MIT + file LICENSE | 
| Encoding: | UTF-8 | 
| LazyData: | true | 
| ByteCompile: | true | 
| Suggests: | testthat, covr, knitr, rmarkdown, methods | 
| RoxygenNote: | 7.2.1 | 
| Depends: | R (≥ 3.3.0) | 
| Imports: | dplyr, entropy, raster, rlang, sf, tibble, tidyr | 
| Enhances: | stars, terra | 
| VignetteBuilder: | knitr | 
| URL: | https://jakubnowosad.com/sabre/ | 
| BugReports: | https://github.com/Nowosad/sabre/issues | 
| NeedsCompilation: | no | 
| Packaged: | 2022-08-17 09:01:55 UTC; jn | 
| Author: | Jakub Nowosad | 
| Maintainer: | Jakub Nowosad <nowosad.jakub@gmail.com> | 
| Repository: | CRAN | 
| Date/Publication: | 2022-08-17 09:30:02 UTC | 
sabre: Spatial Association Between Regionalizations
Description
 
Calculates a degree of spatial association between regionalizations or categorical maps using the information-theoretical V-measure (Nowosad and Stepinski (2018) doi: 10.1080/13658816.2018.1511794). It also offers an R implementation of the MapCurve method (Hargrove et al. (2006) doi: 10.1007/s10109-006-0025-x).
Author(s)
Maintainer: Jakub Nowosad nowosad.jakub@gmail.com (ORCID)
Authors:
- Tomasz Stepinski 
Other contributors:
- Space Informatics Lab [copyright holder] 
See Also
Useful links:
Ecoregions of the United States
Description
Bailey's Ecoregions of the Conterminous United States
Usage
eco_us
Format
An object of class sf (inherits from data.frame) with 330 rows and 5 columns.
Source
https://www.sciencebase.gov/catalog/item/54244abde4b037b608f9e23d
Mapcurves
Description
Mapcurves: a quantitative method for comparing categorical maps.
Usage
mapcurves(x, y, z = NULL)
Arguments
| x | A numeric vector, representing a categorical values. | 
| y | A numeric vector, representing a categorical values. | 
| z | A numeric matrix. The goodness of fit (GOF) value for each pair of
classes in  | 
Value
A list with two elements:
- "ref_map" - the map to be used as reference ("x" or "y") 
- "gof" - the Mapcurves's goodness of fit value 
References
Hargrove, William W., Forrest M. Hoffman, and Paul F. Hessburg. "Mapcurves: a quantitative method for comparing categorical maps." Journal of Geographical Systems 8.2 (2006): 187.
Examples
set.seed(2018-03-21)
A = floor(matrix(runif(100, 0, 9), 10))
B = floor(matrix(runif(100, 0, 9), 10))
mapcurves(A, B)
Mapcurves calculation
Description
It calculates the Mapcurves's goodness-of-fit (GOF)
Usage
mapcurves_calc(x, y, x_name, y_name, precision = NULL)
## S3 method for class 'sf'
mapcurves_calc(x, y, x_name, y_name, precision = NULL)
## S3 method for class 'stars'
mapcurves_calc(x, y, x_name = NULL, y_name = NULL, precision = NULL)
## S3 method for class 'SpatRaster'
mapcurves_calc(x, y, x_name = NULL, y_name = NULL, precision = NULL)
## S3 method for class 'RasterLayer'
mapcurves_calc(x, y, x_name = NULL, y_name = NULL, precision = NULL)
Arguments
| x | An object of class  | 
| y | An object of class  | 
| x_name | A name of the column with regions/clusters names. | 
| y_name | A name of the column with regions/clusters names. | 
| precision | numeric, or object of class  | 
Value
A list with four elements:
- "map1" - the sf object containing the first map used for calculation of GOF 
- "map2" - the sf object containing the second map used for calculation of GOF 
- "ref_map" - the map used as a reference ("x" or "y") 
- "gof" - the Mapcurves's goodness of fit value 
References
Hargrove, William W., Forrest M. Hoffman, and Paul F. Hessburg. "Mapcurves: a quantitative method for comparing categorical maps." Journal of Geographical Systems 8.2 (2006): 187.
Examples
library(sf)
data("regions1")
data("regions2")
mc = mapcurves_calc(x = regions1, y = regions2, x_name = z, y_name = z)
mc
plot(mc$map1)
plot(mc$map2)
library(raster)
data("partitions1")
data("partitions2")
mc2 = mapcurves_calc(x = partitions1, y = partitions2)
mc2
plot(mc2$map1)
plot(mc2$map2)
Red regionalization (raster version)
Description
Raster data of the red regionalization used in Figure 1 of Stepinski and Nowosad (2018)
Usage
partitions1
Format
An object of class RasterLayer of dimension 8 x 10 x 1.
References
Nowosad, Jakub, and Tomasz F. Stepinski. "Spatial association between regionalizations using the information-theoretical V-measure." International Journal of Geographical Information Science (2018). https://doi.org/10.1080/13658816.2018.1511794
Blue regionalization (raster version)
Description
Raster data of the blue regionalization used in Figure 1 of Stepinski and Nowosad (2018)
Usage
partitions2
Format
An object of class RasterLayer of dimension 8 x 10 x 1.
References
Nowosad, Jakub, and Tomasz F. Stepinski. "Spatial association between regionalizations using the information-theoretical V-measure." International Journal of Geographical Information Science (2018). https://doi.org/10.1080/13658816.2018.1511794
Red regionalization
Description
Data of the red regionalization used in Figure 1 of Stepinski and Nowosad (2018)
Usage
regions1
Format
An object of class sf (inherits from data.frame) with 4 rows and 2 columns.
References
Nowosad, Jakub, and Tomasz F. Stepinski. "Spatial association between regionalizations using the information-theoretical V-measure." International Journal of Geographical Information Science (2018). https://doi.org/10.1080/13658816.2018.1511794
Blue regionalization
Description
Data of the blue regionalization used in Figure 1 of Stepinski and Nowosad (2018)
Usage
regions2
Format
An object of class sf (inherits from data.frame) with 3 rows and 2 columns.
References
Nowosad, Jakub, and Tomasz F. Stepinski. "Spatial association between regionalizations using the information-theoretical V-measure." International Journal of Geographical Information Science (2018). https://doi.org/10.1080/13658816.2018.1511794
V-measure
Description
A conditional entropy-based external cluster evaluation measure.
Usage
vmeasure(x, y, z = NULL, B = 1)
Arguments
| x | A numeric vector, representing a categorical values. | 
| y | A numeric vector, representing a categorical values. | 
| z | A numeric matrix. A contingency table of the counts at each
combination of categorical levels. By default this argument is set to  | 
| B | A numeric value. If  | 
Value
A list with three elements:
- "v_measure" 
- "homogeneity" 
- "completeness" 
References
Rosenberg, Andrew, and Julia Hirschberg. "V-measure: A conditional entropy-based external cluster evaluation measure." Proceedings of the 2007 joint conference on empirical methods in natural language processing and computational natural language learning (EMNLP-CoNLL). 2007.
Examples
x = c(1, 1, 1, 2, 2, 3, 3, 3, 1, 1, 2, 2, 2, 3, 3)
y = c(rep(1, 5), rep(2, 5), rep(3, 5))
vmeasure(x, y)
V-measure calculation
Description
It calculates a degree of spatial association between regionalizations using an information-theoretical measure called the V-measure
Usage
vmeasure_calc(x, y, x_name, y_name, B = 1, precision = NULL)
## S3 method for class 'sf'
vmeasure_calc(x, y, x_name, y_name, B = 1, precision = NULL)
## S3 method for class 'stars'
vmeasure_calc(x, y, x_name = NULL, y_name = NULL, B = 1, precision = NULL)
## S3 method for class 'SpatRaster'
vmeasure_calc(x, y, x_name = NULL, y_name = NULL, B = 1, precision = NULL)
## S3 method for class 'RasterLayer'
vmeasure_calc(x, y, x_name = NULL, y_name = NULL, B = 1, precision = NULL)
Arguments
| x | An object of class  | 
| y | An object of class  | 
| x_name | A name of the column with regions/clusters names. | 
| y_name | A name of the column with regions/clusters names. | 
| B | A numeric value. If  | 
| precision | numeric, or object of class  | 
Value
A list with five elements:
- "map1" - the sf object containing the first preprocessed map used for calculation of GOF with two attributes - - map1(name of the category) and- rih(region inhomogeneity)
- "map2" - the sf object containing the second preprocessed map used for calculation of GOF with two attributes - - map1(name of the category) and- rih(region inhomogeneity)
- "v_measure" 
- "homogeneity" 
- "completeness" 
References
Nowosad, Jakub, and Tomasz F. Stepinski. "Spatial association between regionalizations using the information-theoretical V-measure." International Journal of Geographical Information Science (2018). https://doi.org/10.1080/13658816.2018.1511794
Rosenberg, Andrew, and Julia Hirschberg. "V-measure: A conditional entropy-based external cluster evaluation measure." Proceedings of the 2007 joint conference on empirical methods in natural language processing and computational natural language learning (EMNLP-CoNLL). 2007.
Examples
library(sf)
data("regions1")
data("regions2")
vm = vmeasure_calc(x = regions1, y = regions2, x_name = z, y_name = z)
vm
plot(vm$map1["rih"])
plot(vm$map2["rih"])
library(raster)
data("partitions1")
data("partitions2")
vm2 = vmeasure_calc(x = partitions1, y = partitions2)
vm2
plot(vm2$map1[["rih"]])
plot(vm2$map2[["rih"]])