The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Users of the rtables
package can specify the format in
which the numbers in the reporting tables are printed. Formatting
functionality is provided by the formatters
R package. See formatters::list_valid_format_labels()
for a
list of all available formats. The format can be specified by the user
in a few different places. It may happen that, for a single table
layout, the format is specified in more than one place. In such a case,
the final format that will be applied depends on format precedence rules
defined by rtables
. In this vignette, we describe the basic
rules of rtables
format precedence.
The examples shown in this vignette utilize the example
ADSL
dataset, a demographic table that summarizes the
variables content for different population subsets (encoded in the
columns).
Note that all ex_*
data which is currently attached to
the rtables
package is provided by the formatters
package and was created using the publicly available random.cdisc.data
R package.
The format in which numbers are printed can be specified by the user
in a few different places. In the context of precedence, it is important
which level of the split hierarchy formats are specified at. In general,
there are two such levels: the cell level and the
so-called parent table level. The concept of the cell
and the parent table results from the way in which the
rtables
package stores resulting tables. It models the
resulting tables as hierarchical, tree-like objects with the cells (as
leaves) containing multiple values. Particularly noteworthy in this
context is the fact that the actual table splitting occurs in a
row-dominant way (even if column splitting is present in the layout).
rtables
provides user-end function
table_structure()
that prints the structure of a given
table object.
For a simple illustration, consider the following example:
lyt <- basic_table() %>%
split_cols_by("ARM") %>%
split_rows_by("SEX") %>%
analyze(vars = "AGE", afun = mean)
adsl_analyzed <- build_table(lyt, ADSL)
adsl_analyzed
# A: Drug X B: Placebo C: Combination
# —————————————————————————————————————————————————————————————————————————
# F
# mean 32.7594936708861 34.1168831168831 35.1969696969697
# M
# mean 35.5686274509804 37.4363636363636 35.3833333333333
# U
# mean 31.6666666666667 31 35.25
# UNDIFFERENTIATED
# mean 28 NA 45
# [TableTree] SEX
# [TableTree] F
# [ElementaryTable] AGE (1 x 3)
# [TableTree] M
# [ElementaryTable] AGE (1 x 3)
# [TableTree] U
# [ElementaryTable] AGE (1 x 3)
# [TableTree] UNDIFFERENTIATED
# [ElementaryTable] AGE (1 x 3)
In this table, there are 4 sub-tables under the SEX
table. These are: F
, M
, U
, and
UNDIFFERENTIATED
. Each of these sub-tables has one
sub-table AGE
. For example, for the first AGE
sub-table, its parent table is F
.
The concept of hierarchical, tree-like representations of resulting tables translates directly to format precedence and inheritance rules. As a general principle, the format being finally applied for the cell is the one that is the most specific, that is, the one which is the closest to the cell in a given path in the tree. Hence, the precedence-inheritance chain looks like the following:
parent_table -> parent_table -> ... -> parent_table -> cell
In such a chain, the outermost parent_table
is the least
specific place to specify the format, while the cell
is the
most specific one. In cases where the format is specified by the user in
more than one place, the one which is most specific will be applied in
the cell. If no specific format has been selected by the user for the
split, then the default format will be applied. The default format is
"xx"
and it yields the same formatting as the
as.character()
function. In the following sections of this
vignette, we will illustrate the format precedence rules with a few
examples.
Below is a simple layout that does not explicitly set a format for the output of the analysis function. In such a case, the default format is applied.
lyt0 <- basic_table() %>%
split_cols_by("ARM") %>%
analyze(vars = "AGE", afun = mean)
build_table(lyt0, ADSL)
# A: Drug X B: Placebo C: Combination
# —————————————————————————————————————————————————————————————
# mean 33.7686567164179 35.4328358208955 35.4318181818182
The format of a cell can be explicitly specified via the
rcell()
or in_rows()
functions. The former is
essentially a collection of data objects while the latter is a
collection of rcell()
objects. As previously mentioned,
this is the most specific place where the format can be specified by the
user.
lyt1 <- basic_table() %>%
split_cols_by("ARM") %>%
analyze(vars = "AGE", afun = function(x) {
rcell(mean(x), format = "xx.xx", label = "Mean")
})
build_table(lyt1, ADSL)
# A: Drug X B: Placebo C: Combination
# ——————————————————————————————————————————————
# Mean 33.77 35.43 35.43
lyt1a <- basic_table() %>%
split_cols_by("ARM") %>%
analyze(vars = "AGE", afun = function(x) {
in_rows(
"Mean" = rcell(mean(x)),
.formats = "xx.xx"
)
})
build_table(lyt1a, ADSL)
# A: Drug X B: Placebo C: Combination
# ——————————————————————————————————————————————
# Mean 33.77 35.43 35.43
If the format is specified in both of these places at the same time,
the one specified via in_rows()
takes highest precedence.
Technically, in this case, the format defined in rcell()
will simply be overwritten by the one defined in in_rows()
.
This is because the format specified in in_rows()
is
applied to the cells not the rows (overriding the previously specified
cell-specific values), which indicates that the precedence rules
described above are still in place.
lyt2 <- basic_table() %>%
split_cols_by("ARM") %>%
analyze(vars = "AGE", afun = function(x) {
in_rows(
"Mean" = rcell(mean(x), format = "xx.xxx"),
.formats = "xx.xx"
)
})
build_table(lyt2, ADSL)
# A: Drug X B: Placebo C: Combination
# ——————————————————————————————————————————————
# Mean 33.77 35.43 35.43
In addition to the cell level, the format can be specified at the parent table level. If no format has been set by the user for a cell, the most specific format for that cell is the one defined at its innermost parent table split (if any).
lyt3 <- basic_table() %>%
split_cols_by("ARM") %>%
analyze(vars = "AGE", mean, format = "xx.x")
build_table(lyt3, ADSL)
# A: Drug X B: Placebo C: Combination
# ——————————————————————————————————————————————
# mean 33.8 35.4 35.4
If the cell format is also specified for a cell, then the parent table format is ignored for this cell since the cell format is more specific and therefore takes precedence.
lyt4 <- basic_table() %>%
split_cols_by("ARM") %>%
analyze(
vars = "AGE", afun = function(x) {
rcell(mean(x), format = "xx.xx", label = "Mean")
},
format = "xx.x"
)
build_table(lyt4, ADSL)
# A: Drug X B: Placebo C: Combination
# ——————————————————————————————————————————————
# Mean 33.77 35.43 35.43
lyt4a <- basic_table() %>%
split_cols_by("ARM") %>%
analyze(
vars = "AGE", afun = function(x) {
in_rows(
"Mean" = rcell(mean(x)),
"SD" = rcell(sd(x)),
.formats = "xx.xx"
)
},
format = "xx.x"
)
build_table(lyt4a, ADSL)
# A: Drug X B: Placebo C: Combination
# ——————————————————————————————————————————————
# Mean 33.77 35.43 35.43
# SD 6.55 7.90 7.72
In the following, slightly more complicated, example, we can observe
partial inheritance. That is, only SD
cells inherit the
parent table’s format while the Mean
cells do not.
lyt5 <- basic_table() %>%
split_cols_by("ARM") %>%
analyze(
vars = "AGE", afun = function(x) {
in_rows(
"Mean" = rcell(mean(x), format = "xx.xx"),
"SD" = rcell(sd(x))
)
},
format = "xx.x"
)
build_table(lyt5, ADSL)
# A: Drug X B: Placebo C: Combination
# ——————————————————————————————————————————————
# Mean 33.77 35.43 35.43
# SD 6.6 7.9 7.7
NA
HandlingConsider the following layout and the resulting table created:
lyt6 <- basic_table() %>%
split_cols_by("ARM") %>%
split_rows_by("SEX") %>%
analyze(vars = "AGE", afun = mean, format = "xx.xx")
build_table(lyt6, ADSL)
# A: Drug X B: Placebo C: Combination
# ——————————————————————————————————————————————————————————
# F
# mean 32.76 34.12 35.20
# M
# mean 35.57 37.44 35.38
# U
# mean 31.67 31.00 35.25
# UNDIFFERENTIATED
# mean 28.00 NA 45.00
In the output the cell corresponding to the
UNDIFFERENTIATED
level of SEX
and the
B: Placebo
level of ARM
is displayed as
NA
. This occurs because there were no non-NA
values under this facet that could be used to compute the mean.
rtables
allows the user to specify a string to display when
cell values are NA
. Similar to formats for numbers, the
user can specify a string to replace NA
with the parameter
format_na_str
or .format_na_str
. This can be
specified at the cell or parent table level. NA
string
precedence and inheritance rules are the same as those for number format
precedence, described in the previous section of this vignette. We will
illustrate this with a few examples.
NA
Values at the Cell LevelAt the cell level, it is possible to replace NA
values
with a custom string by means of the format_na_str
parameter in rcell()
or .format_na_str
parameter in in_rows()
.
lyt7 <- basic_table() %>%
split_cols_by("ARM") %>%
split_rows_by("SEX") %>%
analyze(vars = "AGE", afun = function(x) {
rcell(mean(x), format = "xx.xx", label = "Mean", format_na_str = "<missing>")
})
build_table(lyt7, ADSL)
# A: Drug X B: Placebo C: Combination
# ——————————————————————————————————————————————————————————
# F
# Mean 32.76 34.12 35.20
# M
# Mean 35.57 37.44 35.38
# U
# Mean 31.67 31.00 35.25
# UNDIFFERENTIATED
# Mean 28.00 <missing> 45.00
lyt7a <- basic_table() %>%
split_cols_by("ARM") %>%
split_rows_by("SEX") %>%
analyze(vars = "AGE", afun = function(x) {
in_rows(
"Mean" = rcell(mean(x), format = "xx.xx"),
.format_na_strs = "<MISSING>"
)
})
build_table(lyt7a, ADSL)
# A: Drug X B: Placebo C: Combination
# ——————————————————————————————————————————————————————————
# F
# Mean 32.76 34.12 35.20
# M
# Mean 35.57 37.44 35.38
# U
# Mean 31.67 31.00 35.25
# UNDIFFERENTIATED
# Mean 28.00 <MISSING> 45.00
If the NA
string is specified in both of these places at
the same time, the one specified with in_rows()
takes
precedence. Technically, in this case the NA
replacement
string defined in rcell()
will simply be overwritten by the
one defined in in_rows()
. This is because the
NA
string specified in in_rows()
is applied to
the cells, not the rows (overriding the previously specified cell
specific values), which means that the precedence rules described above
are still in place.
lyt8 <- basic_table() %>%
split_cols_by("ARM") %>%
split_rows_by("SEX") %>%
analyze(vars = "AGE", afun = function(x) {
in_rows(
"Mean" = rcell(mean(x), format = "xx.xx", format_na_str = "<missing>"),
.format_na_strs = "<MISSING>"
)
})
build_table(lyt8, ADSL)
# A: Drug X B: Placebo C: Combination
# ——————————————————————————————————————————————————————————
# F
# Mean 32.76 34.12 35.20
# M
# Mean 35.57 37.44 35.38
# U
# Mean 31.67 31.00 35.25
# UNDIFFERENTIATED
# Mean 28.00 <MISSING> 45.00
NA
Values and Inheritance
PrinciplesIn addition to the cell level, the string replacement for
NA
values can be specified at the parent table level. If no
replacement string has been specified by the user for a cell, the most
specific NA
string for that cell is the one defined at its
innermost parent table split (if any).
lyt9 <- basic_table() %>%
split_cols_by("ARM") %>%
split_rows_by("SEX") %>%
analyze(vars = "AGE", mean, format = "xx.xx", na_str = "not available")
build_table(lyt9, ADSL)
# A: Drug X B: Placebo C: Combination
# —————————————————————————————————————————————————————————————
# F
# mean 32.76 34.12 35.20
# M
# mean 35.57 37.44 35.38
# U
# mean 31.67 31.00 35.25
# UNDIFFERENTIATED
# mean 28.00 not available 45.00
If an NA
value replacement string was also specified at
the cell level, then the one set at the parent table level is ignored
for this cell as the cell level format is more specific and therefore
takes precedence.
lyt10 <- basic_table() %>%
split_cols_by("ARM") %>%
split_rows_by("SEX") %>%
analyze(
vars = "AGE", afun = function(x) {
rcell(mean(x), format = "xx.xx", label = "Mean", format_na_str = "<missing>")
},
na_str = "not available"
)
build_table(lyt10, ADSL)
# A: Drug X B: Placebo C: Combination
# ——————————————————————————————————————————————————————————
# F
# Mean 32.76 34.12 35.20
# M
# Mean 35.57 37.44 35.38
# U
# Mean 31.67 31.00 35.25
# UNDIFFERENTIATED
# Mean 28.00 <missing> 45.00
lyt10a <- basic_table() %>%
split_cols_by("ARM") %>%
split_rows_by("SEX") %>%
analyze(
vars = "AGE", afun = function(x) {
in_rows(
"Mean" = rcell(mean(x)),
"SD" = rcell(sd(x)),
.formats = "xx.xx",
.format_na_strs = "<missing>"
)
},
na_str = "not available"
)
build_table(lyt10a, ADSL)
# A: Drug X B: Placebo C: Combination
# ——————————————————————————————————————————————————————————
# F
# Mean 32.76 34.12 35.20
# SD 6.09 7.06 7.43
# M
# Mean 35.57 37.44 35.38
# SD 7.08 8.69 8.24
# U
# Mean 31.67 31.00 35.25
# SD 3.21 5.66 3.10
# UNDIFFERENTIATED
# Mean 28.00 <missing> 45.00
# SD <missing> <missing> 1.41
In the following, slightly more complicated example, we can observe
partial inheritance of NA strings. That is, only SD
cells
inherit the parent table’s NA
string, while the
Mean
cells do not.
lyt11 <- basic_table() %>%
split_cols_by("ARM") %>%
split_rows_by("SEX") %>%
analyze(
vars = "AGE", afun = function(x) {
in_rows(
"Mean" = rcell(mean(x), format_na_str = "<missing>"),
"SD" = rcell(sd(x))
)
},
format = "xx.xx",
na_str = "not available"
)
build_table(lyt11, ADSL)
# A: Drug X B: Placebo C: Combination
# —————————————————————————————————————————————————————————————————
# F
# Mean 32.76 34.12 35.20
# SD 6.09 7.06 7.43
# M
# Mean 35.57 37.44 35.38
# SD 7.08 8.69 8.24
# U
# Mean 31.67 31.00 35.25
# SD 3.21 5.66 3.10
# UNDIFFERENTIATED
# Mean 28.00 <missing> 45.00
# SD not available not available 1.41
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.