The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
As of version 0.6.0
, rsimsum
supports the
fully automated creation of nested loop plots (Rücker and Schwarzer,
2014).
A dataset that can be purposefully used to illustrate nested loop
plots is bundled and shipped with rsimsum
:
This data set contains the results of a simulation study on survival modelling with 150 distinct data-generating mechanisms:
head(nlp)
#> dgm i model b se baseline ss beta esigma pars
#> 1 1 1 1 0.17119413 0.2064344 E 100 0 0.1 0.5
#> 2 1 1 2 0.19822898 0.2048353 E 100 0 0.1 0.5
#> 3 1 50 2 -0.03404229 0.2071766 E 100 0 0.1 0.5
#> 4 1 82 1 -0.09263968 0.2040281 E 100 0 0.1 0.5
#> 5 1 82 2 -0.05095914 0.2026813 E 100 0 0.1 0.5
#> 6 1 33 1 -0.17013365 0.2038076 E 100 0 0.1 0.5
Further information on the data could be find in the help file
(?nlp
).
We can analyse this simulation study using rsimsum
as
usual:
s <- rsimsum::simsum(
data = nlp, estvarname = "b", true = 0, se = "se",
methodvar = "model", by = c("baseline", "ss", "esigma")
)
#> 'ref' method was not specified, 1 set as the reference
s
#> Summary of a simulation study with a single estimand.
#> True value of the estimand: 0
#>
#> Method variable: model
#> Unique methods: 1, 2
#> Reference method: 1
#>
#> By factors: baseline, ss, esigma
#>
#> Monte Carlo standard errors were computed.
Finally, a nested loop plot can be automatically produced via the
autoplot
method, e.g. for bias:
However:
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.