The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

rsamplr: Sampling Algorithms and Spatially Balanced Sampling

Fast tools for unequal probability sampling in multi-dimensional spaces, implemented in Rust for high performance. The package offers a wide range of methods, including Sampford (Sampford, 1967, <doi:10.1093/biomet/54.3-4.499>) and correlated Poisson sampling (Bondesson and Thorburn, 2008, <doi:10.1111/j.1467-9469.2008.00596.x>), pivotal sampling (Deville and Tillé, 1998, <doi:10.1093/biomet/91.4.893>), and balanced sampling such as the cube method (Deville and Tillé, 2004, <doi:10.1093/biomet/91.4.893>) to ensure auxiliary totals are respected. Spatially balanced approaches, including the local pivotal method (Grafström et al., 2012, <doi:10.1111/j.1541-0420.2011.01699.x>), spatially correlated Poisson sampling (Grafström, 2012, <doi:10.1016/j.jspi.2011.07.003>), and locally correlated Poisson sampling (Prentius, 2024, <doi:10.1002/env.2832>), provide efficient designs when the target variable is linked to auxiliary information.

Version: 0.1.1
Depends: R (≥ 4.2)
Published: 2025-09-11
DOI: 10.32614/CRAN.package.rsamplr
Author: Wilmer Prentius ORCID iD [aut, cre], Anton Grafström ORCID iD [ctb], Authors of the dependent Rust crates [aut] (see inst/AUTHORS file)
Maintainer: Wilmer Prentius <wilmer.prentius at slu.se>
BugReports: https://github.com/envisim/rust-samplr/issues
License: AGPL-3
URL: https://www.envisim.se/, https://github.com/envisim/rust-samplr/
NeedsCompilation: yes
SystemRequirements: Cargo (Rust's package manager), rustc >= 1.75.0
Language: en-GB
CRAN checks: rsamplr results

Documentation:

Reference manual: rsamplr.html , rsamplr.pdf

Downloads:

Package source: rsamplr_0.1.1.tar.gz
Windows binaries: r-devel: rsamplr_0.1.1.zip, r-release: rsamplr_0.1.1.zip, r-oldrel: rsamplr_0.1.1.zip
macOS binaries: r-release (arm64): rsamplr_0.1.1.tgz, r-oldrel (arm64): rsamplr_0.1.1.tgz, r-release (x86_64): rsamplr_0.1.1.tgz, r-oldrel (x86_64): rsamplr_0.1.1.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=rsamplr to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.