The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The goal of rptR
is to provide point estimates,
confidence intervals and significance tests for the
repeatability (intra-class correlation coefficient) of
measurements based on generalised linear mixed models (GLMMs). The
function ?summary.rpt
produces summaries in a detailed
format, whereby ?plot.rpt
plots the distributions of
bootstrap or permutation test estimates.
When using rptR
, please cite our paper:
Stoffel, M. A., Nakagawa, S., & Schielzeth, H. (2017). rptR:
Repeatability estimation and variance decomposition by generalized
linear mixed-effects models. Methods in Ecology and Evolution,
8(11), 1639-1644.
You can install the stable version of rptR
from CRAN
with:
install.packages("rptR")
Or the development version from GitHub with:
# install.packages("remotes")
::install_github("mastoffel/rptR", build_vignettes = TRUE, dependencies = TRUE)
remotes# manual
browseVignettes("rptR")
If you find a bug, please report a minimal reproducible example in the issues.
Repeatability of beetle body length (BodyL
) for both
Container
and Population
while adjusting for
Treatment
and Sex
:
library(rptR)
data(BeetlesBody)
<- rpt(BodyL ~ Treatment + Sex + (1 | Container) + (1 | Population),
rpts grname = c("Container", "Population"), data = BeetlesBody,
datatype = "Gaussian", nboot = 100, npermut = 100)
summary(rpts)
#>
#> Repeatability estimation using the lmm method
#>
#> Call = rpt(formula = BodyL ~ Treatment + Sex + (1 | Container) + (1 | Population), grname = c("Container", "Population"), data = BeetlesBody, datatype = "Gaussian", nboot = 100, npermut = 100)
#>
#> Data: 960 observations
#> ----------------------------------------
#>
#> Container (120 groups)
#>
#> Repeatability estimation overview:
#> R SE 2.5% 97.5% P_permut LRT_P
#> 0.0834 0.0247 0.0449 0.135 0.01 0
#>
#> Bootstrapping and Permutation test:
#> N Mean Median 2.5% 97.5%
#> boot 100 0.08428 0.077960 0.0449 0.1352
#> permut 100 0.00428 0.000315 0.0000 0.0232
#>
#> Likelihood ratio test:
#> logLik full model = -1528.553
#> logLik red. model = -1555.264
#> D = 53.4, df = 1, P = 1.34e-13
#>
#> ----------------------------------------
#>
#>
#> Population (12 groups)
#>
#> Repeatability estimation overview:
#> R SE 2.5% 97.5% P_permut LRT_P
#> 0.491 0.107 0.233 0.644 0.02 0
#>
#> Bootstrapping and Permutation test:
#> N Mean Median 2.5% 97.5%
#> boot 100 0.477 0.491 0.233 0.644
#> permut 100 0.454 0.453 0.422 0.483
#>
#> Likelihood ratio test:
#> logLik full model = -1528.553
#> logLik red. model = -1595.399
#> D = 134, df = 1, P = 3.19e-31
#>
#> ----------------------------------------
rptR
estimates uncertainties around repeatability
estimates with parametric bootstrapping. The distribution of bootstrap
estimates can easily be plotted.
plot(rpts, grname="Container", type="boot", cex.main=0.8, col = "#ECEFF4")
plot(rpts, grname="Population", type="boot", cex.main=0.8, col = "#ECEFF4")
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.