The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Diagnostic tests

Refer to the Rmd source code to see how to adapt this template to your project.

Pair-wise local dependence test

spec <- list()
spec[1:6] <- rpf.grm(factors=2)
## Warning in `[<-`(`*tmp*`, 1:6, value = new("rpf.mdim.grm", spec = c(2, 2, :
## implicit list embedding of S4 objects is deprecated
gen.param <- sapply(spec, rpf.rparam)
colnames(gen.param) <- paste("i", 1:ncol(gen.param), sep="")
gen.param[2,] <- c(0,0,.5,.5,1,1)

resp <- rpf.sample(1000, spec, gen.param)

# hide latent factor that we don't know about
tspec <- list()
tspec[1:length(spec)] <- rpf.grm(factors=1)
## Warning in `[<-`(`*tmp*`, 1:length(spec), value = new("rpf.mdim.grm", spec =
## c(2, : implicit list embedding of S4 objects is deprecated
grp <- list(spec=tspec, param=gen.param[-2,], mean=c(0), cov=diag(1), data=resp)

ChenThissen1997(grp)
## Chen & Thissen (1997) local dependence test
##   Magnitudes larger than abs(log(.01))=4.6 are significant at the p=.01 level
##   A positive (negative) sign indicates more (less) observed correlation than expected
## 
##       i1    i2    i3   i4   i5
## i2 -2.65    NA    NA   NA   NA
## i3  1.25  2.67    NA   NA   NA
## i4 -2.39  2.99  3.11   NA   NA
## i5 -2.74 -3.47 -0.86 8.36   NA
## i6  0.94  2.83  2.51 1.12 3.41

Sum-score item fit test

(got <- SitemFit(grp))
## Orlando & Thissen (2000) sum-score based item fit test
##   Magnitudes larger than abs(log(.01))=4.6 are significant at the p=.01 level
## 
## i1 : n = 1000, S-X2(  6) =   6.51, log(p) = -1
## i2 : n = 1000, S-X2(  6) =   6.99, log(p) = -1.13
## i3 : n = 1000, S-X2(  6) =   7.59, log(p) = -1.31
## i4 : n = 1000, S-X2(  6) =   3.13, log(p) = -0.23
## i5 : n = 1000, S-X2(  5) =   2.12, log(p) = -0.18
## i6 : n = 1000, S-X2(  5) =   4.32, log(p) = -0.69

Who can resist plotting these tables?

plot of chunk unnamed-chunk-4plot of chunk unnamed-chunk-4plot of chunk unnamed-chunk-4plot of chunk unnamed-chunk-4plot of chunk unnamed-chunk-4plot of chunk unnamed-chunk-4

Sum-score EAP table

(got <- sumScoreEAP(grp))
##             p         a1       se1      cov1
## 0 0.177006547 -1.0022418 0.7508276 0.5637421
## 1 0.288513776 -0.4291543 0.7068011 0.4995677
## 2 0.263058519  0.1376443 0.6572072 0.4319213
## 3 0.157244624  0.6884698 0.6401668 0.4098135
## 4 0.080063208  1.2255142 0.6342668 0.4022944
## 5 0.029790612  1.6791792 0.6386705 0.4079001
## 6 0.004322714  1.9920902 0.6464811 0.4179379

plot of chunk unnamed-chunk-6

Rasch residual-based infit/outfit

  data(science)
  spec <- list()
  spec[1:25] <- rpf.nrm(outcomes=3, T.c = lower.tri(diag(2),TRUE) * -1)
## Warning in `[<-`(`*tmp*`, 1:25, value = new("rpf.mdim.nrm", spec = c(3, :
## implicit list embedding of S4 objects is deprecated
  param <- rbind(a=1, alf1=1, alf2=0,
        gam1=sfif$MEASURE + sfsf[sfsf$CATEGORY==1,"Rasch.Andrich.threshold.MEASURE"],
        gam2=sfif$MEASURE + sfsf[sfsf$CATEGORY==2,"Rasch.Andrich.threshold.MEASURE"])
  colnames(param) <- sfif$NAME
  iorder <- match(sfif$NAME, colnames(sfpf))
  responses <- sfpf[,iorder]
  rownames(responses) <- sfpf$NAME
  
  rpf.1dim.fit(spec, param, responses, sfpf$MEASURE, 2, wh.exact=TRUE)
## Warning in rpf.1dim.fit(spec, param, responses, sfpf$MEASURE, 2, wh.exact =
## TRUE): Excluding item GO TO MUSEUM because outcomes != 3
## Warning in rpf.1dim.fit(spec, param, responses, sfpf$MEASURE, 2, wh.exact =
## TRUE): Excluding response ROSSNER, LAWRENCE F. because it is a minimum or
## maximum
##     n     infit     infit.z    outfit    outfit.z
## 1  74 0.7334760 -1.93854363 0.6662677 -1.84016154
## 2  74 0.7557765 -1.49109930 0.5601381 -1.43788307
## 3  74 0.6562136 -2.62314065 0.6235471 -2.50977057
## 4  74 0.9885977 -0.02982227 0.9833379 -0.05803811
## 5  74 2.2854600  5.28398081 3.9687036  6.98045705
## 6  74 0.8806001 -0.79728007 0.8212982 -1.02012688
## 7  74 0.9694889 -0.16907311 1.0049137  0.08462788
## 8  74 1.1684407  1.13263699 1.2320360  1.40767658
## 9  74 1.1125813  0.82684751 1.1337003  0.75931289
## 10 74 0.7756357 -1.09399342 0.5617036 -1.14659113
## 11 74 0.7286889 -1.83371616 0.5881417 -1.68055554
## 12 74 0.8493121 -0.62542291 0.7008119 -0.43349100
## 13 74 0.8730059 -0.86823601 0.8058509 -1.13628429
## 14 74 0.7502023 -1.67364559 0.6057915 -1.69066099
## 15 74 1.0934249  0.65700883 1.0512049  0.36542993
## 16 74 0.6632654 -2.59174746 0.6005216 -2.35711937
## 17 74 1.2325992  0.58992208 1.1912748  0.50748517
## 18 74 0.9690502  0.02438538 1.0925458  0.35481861
## 19 74 1.3529043  2.12137594 1.7997411  3.71876933
## 20 74 0.7334508 -1.59075191 0.5470207 -1.51023199
## 21 74 0.8040046 -1.40104331 0.7127619 -1.48373014
## 22 74 2.3647156  5.80477994 4.6517042  8.53849619
## 23 74 0.7907684 -1.42062168 0.6910078 -1.22075027
## 24 74 0.7830659 -1.61643142 0.7215023 -1.66985954
##                               name
## 1                      WATCH BIRDS
## 2            READ BOOKS ON ANIMALS
## 3             READ BOOKS ON PLANTS
## 4               WATCH GRASS CHANGE
## 5            FIND BOTTLES AND CANS
## 6  LOOK UP STRANGE ANIMAL OR PLANT
## 7                WATCH ANIMAL MOVE
## 8          LOOK IN SIDEWALK CRACKS
## 9                 LEARN WEED NAMES
## 10             LISTEN TO BIRD SING
## 11         FIND WHERE ANIMAL LIVES
## 12                     GROW GARDEN
## 13      LOOK AT PICTURES OF PLANTS
## 14             READ ANIMAL STORIES
## 15                      MAKE A MAP
## 16          WATCH WHAT ANIMALS EAT
## 17                    GO ON PICNIC
## 18                       GO TO ZOO
## 19                      WATCH BUGS
## 20            WATCH BIRD MAKE NEST
## 21       FIND OUT WHAT ANIMALS EAT
## 22                     WATCH A RAT
## 23   FIND OUT WHAT FLOWERS LIVE ON
## 24     TALK W FRIENDS ABOUT PLANTS
  head(rpf.1dim.fit(spec, param, responses, sfpf$MEASURE, 1, wh.exact=TRUE))
## Warning in rpf.1dim.fit(spec, param, responses, sfpf$MEASURE, 1, wh.exact =
## TRUE): Excluding item GO TO MUSEUM because outcomes != 3
## Warning in rpf.1dim.fit(spec, param, responses, sfpf$MEASURE, 1, wh.exact =
## TRUE): Excluding response ROSSNER, LAWRENCE F. because it is a minimum or
## maximum
##    n     infit     infit.z    outfit   outfit.z                 name
## 1 24 0.9693598 -0.01898239 0.8675200 -0.2174955 ROSSNER, MARC DANIEL
## 2 24 0.4687608 -2.24283176 0.4341095 -1.3589919     ROSSNER, TOBY G.
## 3 24 0.7377522 -0.97658469 0.6784338 -0.8996851  ROSSNER, MICHAEL T.
## 4 24 0.7940946 -0.75849430 1.3987520  1.1557079  ROSSNER, REBECCA A.
## 5 24 1.6391409  2.12339795 2.5979105  3.4653767      ROSSNER, TR CAT
## 6 24 1.8561200  1.94796584 1.2288375  0.5464035     WRIGHT, BENJAMIN

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.