The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Type: Package
Title: Ridge Regression Parameter Estimation
Version: 0.1.1
Description: It is a package that provides alternative approach for finding optimum parameters of ridge regression. This package focuses on finding the ridge parameter value k which makes the variance inflation factors closest to 1, while keeping them above 1 as addressed by Michael Kutner, Christopher Nachtsheim, John Neter, William Li (2004, ISBN:978-0073108742). Moreover, the package offers end-to-end functionality to find optimum k value and presents the detailed ridge regression results. Finally it shows three sets of graphs consisting k versus variance inflation factors, regression coefficients and standard errors of them.
License: GPL (≥ 3)
Encoding: UTF-8
URL: https://github.com/filizkrdg/ridgregextra
BugReports: https://github.com/filizkrdg/ridgregextra/issues
Depends: R (≥ 4.0.0), plotly (≥ 4.9.0), isdals (≥ 3.0.0), mctest (≥ 1.3.0), stats(≥ 4.0.0), graphics(≥ 4.0.0)
RoxygenNote: 7.1.1
NeedsCompilation: no
Packaged: 2023-11-25 21:39:09 UTC; olgunaydin
Author: Filiz Karadag ORCID iD [aut], Hakan Savas Sazak ORCID iD [aut], Olgun Aydin ORCID iD [cre]
Maintainer: Olgun Aydin <olgun.aydin@pg.edu.pl>
Repository: CRAN
Date/Publication: 2023-11-25 21:50:02 UTC

Ridge regression results with a manually selected k value

Description

Ridge regression with a manually selected k value

Usage

ridge_reg(x, y, k)

Arguments

x

Explanatory variables (Dataframe, matrix)

y

Dependent variables (Dataframe, vector)

k

Ridge parameter

Value

A list of lists

Examples

library("mctest")
x <- Hald[,-1]
y <- Hald[,1]
k <- 0.1
ridge_reg(x,y,k)

library(isdals)
data(bodyfat)
x <- bodyfat[,-1]
y <- bodyfat[,1]
k <- 0.1
ridge_reg(x,y,k)

Ridge regression results with an automatically selected k value

Description

Ridge regression with a selected k value

Usage

ridgereg_k(x, y, a, b)

Arguments

x

Explanatory variables (Dataframe, matrix)

y

Dependent variables (Dataframe, vector)

a

Lower bound of k

b

Upper bound of k

Value

A list of lists

Examples

library("mctest")
x <- Hald[,-1]
y <- Hald[,1]
ridgereg_k(x,y,a=0,b=1)

library(isdals)
data(bodyfat)
x <- bodyfat[,-1]
y <- bodyfat[,1]
ridgereg_k(x,y,a=0,b=1)

Ridge regression tables in the range of given lower and upper bounds of k values

Description

Ridge regression tables in the range of given lower and upper bounds of k values

Usage

vif_k(x, y, a, b)

Arguments

x

Explanatory variables (Dataframe, matrix)

y

Dependent variables (Dataframe, vector)

a

Lower bound of k

b

Upper bound of k

Value

A list of lists

Examples

library("mctest")
x <- Hald[,-1]
y <- Hald[,1]
vif_k(x,y,a=0,b=1)

library(isdals)
data(bodyfat)
x <- bodyfat[,-1]
y <- bodyfat[,1]
vif_k(x,y,a=0,b=1)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.