The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Title: Analysis of Honeycomb Selection Designs
Version: 2.3.4
Description: A useful statistical tool for the construction and analysis of Honeycomb Selection Designs. More information about this type of designs: Fasoula V. (2013) <doi:10.1002/9781118497869.ch6> Fasoula V.A., and Tokatlidis I.S. (2012) <doi:10.1007/s13593-011-0034-0> Fasoulas A.C., and Fasoula V.A. (1995) <doi:10.1002/9780470650059.ch3> Tokatlidis I. (2016) <doi:10.1017/S0014479715000150> Tokatlidis I., and Vlachostergios D. (2016) <doi:10.3390/d8040029>.
Depends: R (≥ 4.2)
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
Encoding: UTF-8
RoxygenNote: 7.2.3
Suggests: knitr, rmarkdown
VignetteBuilder: knitr
LazyData: true
Imports: stats, utils, graphics
NeedsCompilation: no
Packaged: 2023-08-23 18:31:51 UTC; Windows
Author: Anastasios Katsileros [aut], Nikos Antonetsis [aut, cre], Marietta Gkika [aut], Eleni Tani [aut], Ioannis Tokatlidis [aut], Penelope Bebeli [aut]
Maintainer: Nikos Antonetsis <stud610027@aua.gr>
Repository: CRAN
Date/Publication: 2023-08-23 18:50:02 UTC

Construction of the honeycomb selection design.

Description

This function creates a data frame of a honeycomb selection design.

Usage

HSD(E, K, rows, plpr, distance, poly = TRUE, control = FALSE)

Arguments

E

The number of entries.

K

The k parameter.

rows

The number of rows.

plpr

The number of plants per row.

distance

The plant-to-plant distance in meters.

poly

If TRUE the polygon pattern is displayed.

control

Convert the design to controlled.

Value

A dataframe.

References

Fasoula V. (2013). Prognostic Breeding: A New Paradigm for Crop Improvement. Plant Breeding Reviews 37: 297-347. 10.1002/9781118497869.ch6. doi:10.1002/9781118497869.ch6

Fasoula V.A., and Tokatlidis I.S. (2012). Development of crop cultivars by honeycomb breeding. Agronomy for Sustainable Development 32:161–180. 10.1007/s13593-011-0034-0 doi:10.1007/s13593-011-0034-0

Fasoulas A.C., and Fasoula V.A. (1995). Honeycomb selection designs. In J. Janick (ed.). Plant Breeding Reviews 13: 87-139. doi:10.1002/9780470650059.ch3

Tokatlidis I. (2016). Sampling the spatial heterogeneity of the honeycomb model in maize and wheat breeding trials: Analysis of secondary data compared to popular classical designs. Experimental Agriculture, 52(3), 371-390. doi:10.1017/S0014479715000150

Tokatlidis I., and Vlachostergios D. (2016). Sustainable Stewardship of the Landrace Diversity. Diversity 8(4):29. doi:10.3390/d8040029

Examples

HSD(7,2,10,10,1)

Construction of the honeycomb selection design without control.

Description

This function creates a data frame of a honeycomb selection design (one entry, without control).

Usage

HSD0(rows, plpr, distance, poly = TRUE)

Arguments

rows

The number of rows.

plpr

The number of plants per row.

distance

The plant-to-plant distance in meters.

poly

If TRUE set polygon pattern is displayed.

Value

A dataframe.

References

Fasoula V. (2013). Prognostic Breeding: A New Paradigm for Crop Improvement. Plant Breeding Reviews 37: 297-347. 10.1002/9781118497869.ch6. doi:10.1002/9781118497869.ch6

Fasoula V.A., and Tokatlidis I.S. (2012). Development of crop cultivars by honeycomb breeding. Agronomy for Sustainable Development 32:161–180. 10.1007/s13593-011-0034-0 doi:10.1007/s13593-011-0034-0

Fasoulas A.C., and Fasoula V.A. (1995). Honeycomb selection designs. In J. Janick (ed.). Plant Breeding Reviews 13: 87-139. doi:10.1002/9780470650059.ch3

Tokatlidis I. (2016). Sampling the spatial heterogeneity of the honeycomb model in maize and wheat breeding trials: Analysis of secondary data compared to popular classical designs. Experimental Agriculture, 52(3), 371-390. doi:10.1017/S0014479715000150

Tokatlidis I., and Vlachostergios D. (2016). Sustainable Stewardship of the Landrace Diversity. Diversity 8(4):29. doi:10.3390/d8040029

Examples

HSD0(10,10,1)

Construction of the honeycomb selection design with one control.

Description

This function creates a data frame of a honeycomb selection design (one entry, one control).

Usage

HSD01(K, rows, plpr, distance, poly = TRUE)

Arguments

K

The K parameter.

rows

The number of rows.

plpr

The number of plants per row.

distance

Distance between plants in meters.

poly

If TRUE the polygon pattern is displayed.

Value

A dataframe.

References

Fasoula V. (2013). Prognostic Breeding: A New Paradigm for Crop Improvement. Plant Breeding Reviews 37: 297-347. 10.1002/9781118497869.ch6. doi:10.1002/9781118497869.ch6

Fasoula V.A., and Tokatlidis I.S. (2012). Development of crop cultivars by honeycomb breeding. Agronomy for Sustainable Development 32:161–180. 10.1007/s13593-011-0034-0 doi:10.1007/s13593-011-0034-0

Fasoulas A.C., and Fasoula V.A. (1995). Honeycomb selection designs. In J. Janick (ed.). Plant Breeding Reviews 13: 87-139. doi:10.1002/9780470650059.ch3

Tokatlidis I. (2016). Sampling the spatial heterogeneity of the honeycomb model in maize and wheat breeding trials: Analysis of secondary data compared to popular classical designs. Experimental Agriculture, 52(3), 371-390. doi:10.1017/S0014479715000150

Tokatlidis I., and Vlachostergios D. (2016). Sustainable Stewardship of the Landrace Diversity. Diversity 8(4):29. doi:10.3390/d8040029

Examples

HSD01(1,10,10,1) 

Construction of the honeycomb selection design with three controls.

Description

This function creates a data frame of a honeycomb selection design (one entry, three controls).

Usage

HSD03(K, rows, plpr, distance, poly = TRUE)

Arguments

K

The k parameter.

rows

The number of rows.

plpr

The number of plants per row.

distance

Distance between plants in meters.

poly

If TRUE the polygon pattern is displayed.

Value

A dataframe

References

Fasoula V. (2013). Prognostic Breeding: A New Paradigm for Crop Improvement. Plant Breeding Reviews 37: 297-347. 10.1002/9781118497869.ch6. doi:10.1002/9781118497869.ch6

Fasoula V.A., and Tokatlidis I.S. (2012). Development of crop cultivars by honeycomb breeding. Agronomy for Sustainable Development 32:161–180. 10.1007/s13593-011-0034-0 doi:10.1007/s13593-011-0034-0

Fasoulas A.C., and Fasoula V.A. (1995). Honeycomb selection designs. In J. Janick (ed.). Plant Breeding Reviews 13: 87-139. doi:10.1002/9780470650059.ch3

Tokatlidis I. (2016). Sampling the spatial heterogeneity of the honeycomb model in maize and wheat breeding trials: Analysis of secondary data compared to popular classical designs. Experimental Agriculture, 52(3), 371-390. doi:10.1017/S0014479715000150

Tokatlidis I., and Vlachostergios D. (2016). Sustainable Stewardship of the Landrace Diversity. Diversity 8(4):29. doi:10.3390/d8040029

Examples

HSD03(1,10,10,1)

Analysis of honeycomb selection design based on blocks of unique nearby entries.

Description

A Function to analyze blocks of entries. The "central" plant in each position is not calculated.

Usage

analize_blocks(
  Main_Data_Frame = NULL,
  observation = NULL,
  row_element = NULL,
  plant_element = NULL,
  CRS,
  rep_unrep
)

Arguments

observation

A vector containing the observations.

row_element

The row of the element which the block it belongs to will be displayed.

plant_element

The position of the element in the row which the block it belongs to will be displayed.

CRS

Number of top plants used for the CRS index.

rep_unrep

Replicated of unreplicated design.

Value

A dataframe.


Analysis of the honeycomb selection design.

Description

This function analyzes the response variable of the data frame.

Usage

analysis(
  Main_Data_Frame = NULL,
  Response_Vector = NULL,
  circle = 6,
  blocks = FALSE,
  row_element = NULL,
  plant_element = NULL,
  CRS = NULL
)

Arguments

Main_Data_Frame

A data frame generated by one of the functions HSD(), HSD0(), HSD01() and HSD03().

Response_Vector

A vector containing the response variable data.

circle

The number of plants per moving ring.

blocks

The moving circular block.

row_element

The position of the plant (number of row) in the center of a moving ring/circular block.

plant_element

The position of the plant (number of plant) in the center of a moving ring/circular block.

CRS

The number of selected plants used for the CRS index.

Value

A list.

References

Fasoula V. (2013). Prognostic Breeding: A New Paradigm for Crop Improvement. Plant Breeding Reviews 37: 297-347. 10.1002/9781118497869.ch6. doi:10.1002/9781118497869.ch6

Fasoula V.A., and Tokatlidis I.S. (2012). Development of crop cultivars by honeycomb breeding. Agronomy for Sustainable Development 32:161–180. 10.1007/s13593-011-0034-0 doi:10.1007/s13593-011-0034-0

Fasoulas A.C., and Fasoula V.A. (1995). Honeycomb selection designs. In J. Janick (ed.). Plant Breeding Reviews 13: 87-139. doi:10.1002/9780470650059.ch3

Tokatlidis I. (2016). Sampling the spatial heterogeneity of the honeycomb model in maize and wheat breeding trials: Analysis of secondary data compared to popular classical designs. Experimental Agriculture, 52(3), 371-390. doi:10.1017/S0014479715000150

Tokatlidis I., and Vlachostergios D. (2016). Sustainable Stewardship of the Landrace Diversity. Diversity 8(4):29. doi:10.3390/d8040029

Examples

main_data<-HSD(7,2,10,10,1)
main_data$Data<-wheat_data$total_yield

analysis(main_data,"Data",6)

Available honeycomb selection designs.

Description

This function is used to generate the available honeycomb selection designs including k parameters.

Usage

generate(E_gen = NULL)

Arguments

E_gen

A single number or a vector of entries.

Value

A dataframe.

References

Fasoula V. (2013). Prognostic Breeding: A New Paradigm for Crop Improvement. Plant Breeding Reviews 37: 297-347. 10.1002/9781118497869.ch6. doi:10.1002/9781118497869.ch6

Fasoula V.A., and Tokatlidis I.S. (2012). Development of crop cultivars by honeycomb breeding. Agronomy for Sustainable Development 32:161–180. 10.1007/s13593-011-0034-0 doi:10.1007/s13593-011-0034-0

Fasoulas A.C., and Fasoula V.A. (1995). Honeycomb selection designs. In J. Janick (ed.). Plant Breeding Reviews 13: 87-139. doi:10.1002/9780470650059.ch3

Tokatlidis I. (2016). Sampling the spatial heterogeneity of the honeycomb model in maize and wheat breeding trials: Analysis of secondary data compared to popular classical designs. Experimental Agriculture, 52(3), 371-390. doi:10.1017/S0014479715000150

Tokatlidis I., and Vlachostergios D. (2016). Sustainable Stewardship of the Landrace Diversity. Diversity 8(4):29. doi:10.3390/d8040029

Examples

generate(1:50)

This function returns a plot.

Description

It prints a graphic.

Usage

plot_convert(dataf, poly = TRUE, y_rev = TRUE, x_rev = FALSE, rep_unrep = NULL)

Arguments

dataf

Data frame containing information about the experiment.

poly

If TRUE set the polygon pattern.

y_rev

Reverse the y axis.

x_rev

Reverse the x axis.

rep_unrep

Replicated or unreplicated selection design.

Value

A dataframe.


This function returns only the grouped replicated selection designs.

Description

It calls the check for R function and keeps only the grouped selection designs.

Usage

return_grouped(R_gen)

Arguments

R_gen

A single number or vector containing the replicated selection designs for testing.

Value

A dataframe.


This function returns only the ungrouped replicated selection designs.

Description

It calls the check for R function and keeps only the Ungrouped selection designs.

Usage

return_ungrouped(R_gen)

Arguments

R_gen

A single number or vector containing the replicated selection designs for testing.

Value

A dataframe.


Tests if a selection design exists and returns its X and Y values.

Description

It is used to return the X and Y values of a replicated selection design if it exists.

Usage

test_for_R(R_gen)

Arguments

R_gen

A single number or vector containing the replicated selection designs for testing.

Value

A dataframe.


A dataset

Description

A dataset containing observations from an R7 honeycomb selection design.

Usage

wheat_data

Format

wheat_data$main_spike_weight

The weight (g) of the main spike of a single plant.

wheat_data$tillers_spike_weight

The weight (g) of tillers' spikes of a single plant.

wheat_data$total_yield

The total yield (g) of a single plant.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.