The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
resquin
(response
quality indicators) provides functions
to calculate survey data quality indicators to help identifying
low-quality responses (Bhaktha, Silber, and
Lechner 2024; Curran 2016; Vaerenbergh and Thomas 2013).
resp_styles()
and resp_distributions()
provide
response quality indicators geared towards multi-item scales or matrix
questions. Both multi-item scales and matrix questions present survey
respondents with multiple questions which have the same response format,
meaning the same number and labeling of response options.
At the moment, resquin
provides two functions:
resp_styles()
- Calculates response style indicators
(e.g. extreme response style or middle response style).resp_distributions()
- Calculates response distribution
indicators (e.g. intra-individual mean and standard deviation over a set
of survey questions).Two more functions are planned:
resp_patterns
- Calculates response pattern indicators
(e.g. straightlining)resp_times
- Calculates response time indicators
(e.g. median item response time)For information on how to use resquin
see the vignettes
Getting
started with resquin and resquin
in practice.
resquin
is available via CRAN and github. To install
resquin
from CRAN or github, you can use one of the
following commands:
# Install resquin via CRAN
install.packages("resquin")
# Install development version of resquin with devtools
::install_github("https://github.com/MatRoth/resquin")
devtools
# Install development version of resquin with pak
::pak("https://github.com/MatRoth/resquin") pak
To use resquin
, supply a data frame containing survey
responses in wide format to either resp_styles()
or
resp_distributions()
.
# load resquin
library(resquin)
# A test data set with three items and ten respondents
<- data.frame(
testdata var_a = c(1,4,3,5,3,2,3,1,3,NA),
var_b = c(2,5,2,3,4,1,NA,2,NA,NA),
var_c = c(1,2,3,NA,3,4,4,5,NA,NA))
testdata#> var_a var_b var_c
#> 1 1 2 1
#> 2 4 5 2
#> 3 3 2 3
#> 4 5 3 NA
#> 5 3 4 3
#> 6 2 1 4
#> 7 3 NA 4
#> 8 1 2 5
#> 9 3 NA NA
#> 10 NA NA NA
# Calculate response style indicators per respondent
resp_styles(x = testdata,
scale_min = 1,
scale_max = 5) |> # Specify scale minimum and maximum
round(2)
#> MRS ARS DRS ERS NERS
#> 1 0.00 0.00 1.00 0.67 0.33
#> 2 0.00 0.67 0.33 0.33 0.67
#> 3 0.67 0.00 0.33 0.00 1.00
#> 4 NA NA NA NA NA
#> 5 0.67 0.33 0.00 0.00 1.00
#> 6 0.00 0.33 0.67 0.33 0.67
#> 7 NA NA NA NA NA
#> 8 0.00 0.33 0.67 0.67 0.33
#> 9 NA NA NA NA NA
#> 10 NA NA NA NA NA
# Calculate response distribution indicators per respondent
resp_distributions(x = testdata) |>
round(2)
#> n_na prop_na ii_mean ii_sd ii_median mahal
#> 1 0 0.00 1.33 0.58 1 2.04
#> 2 0 0.00 3.67 1.53 4 1.60
#> 3 0 0.00 2.67 0.58 3 1.38
#> 4 1 0.33 NA NA NA NA
#> 5 0 0.00 3.33 0.58 3 0.97
#> 6 0 0.00 2.33 1.53 2 1.38
#> 7 1 0.33 NA NA NA NA
#> 8 0 0.00 2.67 2.08 2 1.88
#> 9 2 0.67 NA NA NA NA
#> 10 3 1.00 NA NA NA NA
For a more information on how to use resquin
see the
vignettes Getting
started with resquin and resquin
in practice.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.