The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
calculateLargeSampleRandomizedDesignEffectSizes
,
NP2GMetaAnalysisSimulation
,
NP4GMetaAnalysisSimulation
(fixed errors)calculatePhat
,
calculateCliffd
calculate2GMdMRE
,
calculate4GMdMRE
calculateCliffd
(added export)calculate2GMdMRE
,
calculate4GMdMRE
(fixed CentralPHatMdMRE
calculation)calculate2GMdMRE
,
calculate4GMdMRE
simulateRandomizedBlockDesignEffectSizes
,
NP4GroupMetaAnalysisSimulation (now
NP4GMetaAnalysisSimulation
),
RandomizedBlockDesignEffectSizes
,
percentageInaccuracyOfLargeSampleVarianceApproximation
NP4GMetaAnalysisSimulation
, NP2GroupMetaAnalysisSimulation
now NP2GMetaAnalysisSimulation
, Kendalltaupb now
calculateKendalltaupb
, CalculateTheoreticalEffectSizes now
calculatePopulationStatistics
AnalyseResiduals
calc.a
calc.b
calcCliffdConfidenceIntervals
calcEffectSizeConfidenceIntervals
calcPHatConfidenceIntervals
calculate2GMdMRE
calculate4GMdMRE
calculateCliffd
calculateLargeSampleRandomizedDesignEffectSizes
calculateLargeSampleRandomizedBlockDesignEffectSizes
calculateNullESAccuracy
CatchError
checkIfValidDummyVariable
Cliffd.test
crossoverResidualAnalysis
doLM
metaanalyseSmallSampleSizeExperiments
NP2GMetaAnalysisSimulation
NP4GMetaAnalysisSimulation
PHat.test
simulate2GExperimentData
simulate4GExperimentData
testfunctionParameterChecks
varStandardizedEffectSize
,
RandomizedBlocksAnalysis
, Kendalltaupb
,
Cliffd
, calculatePhat
,
Calc4GroupNPStats
, LaplaceDist
,
simulateRandomizedDesignEffectSizes
,
RandomExperimentSimulations
,
simulateRandomizedBlockDesignEffectSizes
,
RandomizedBlocksExperimentSimulations
,
NP4GroupMetaAnalysisSimulation
,
NP2GroupMetaAnalysisSimulation
,
MetaAnalysisSimulations
,
CalculateTheoreticalEffectSizes
,
RandomizedDesignEffectSizes
,
RandomizedBlockDesignEffectSizes
Data set:
KitchenhamEtAl.CorrelationsAmongParticipants.Madeyski10
,
KitchenhamEtAl.CorrelationsAmongParticipants.Scanniello17TOSEM
,
KitchenhamEtAl.CorrelationsAmongParticipants.Ricca10TSE
,
KitchenhamEtAl.CorrelationsAmongParticipants.Romano18ESEM
,
KitchenhamEtAl.CorrelationsAmongParticipants.Scanniello14JVLC
,
KitchenhamEtAl.CorrelationsAmongParticipants.Reggio15SSM
,
KitchenhamEtAl.CorrelationsAmongParticipants.Gravino15JVLC
,
KitchenhamEtAl.CorrelationsAmongParticipants.Ricca14TOSEM
,
KitchenhamEtAl.CorrelationsAmongParticipants.Scanniello14EASE
,
KitchenhamEtAl.CorrelationsAmongParticipants.Abrahao13TSE
,
KitchenhamEtAl.CorrelationsAmongParticipants.Torchiano17JVLC
,
KitchenhamEtAl.CorrelationsAmongParticipants.Scanniello15EMSE
,
KitchenhamEtAl.CorrelationsAmongParticipants.Scanniello14TOSEM
,
New functions including computational procedures used to
reproduce the main findings in a joint paper (planned to be submitted):
Barbara Kitchenham, Lech Madeyski, Giuseppe Scanniello and Carmine
Gravino, “The Importance of the Correlation in Crossover Experiments”:
CalculateRLevel1
, ExtractGroupSizeData
,
ConstructLevel1ExperimentRData
,
ExtractExperimentData
,
CalculateLevel2ExperimentRData
,
ExtractSummaryStatisticsRandomizedExp
,
calculateBasicStatistics
,
calculateGroupSummaryStatistics
,
rSimulations
MadeyskiLewowski.IndustryRelevantGitHubJavaProjects20191022
- over 15% of entries present in this data set is not present in the
previous data set
MadeyskiLewowski.IndustryRelevantGitHubJavaProjects20190324
due to moved time windows for the project creation and last push
dates.searchForIndustryRelevantGitHubProjects
- now supports
flexible creation date and last push thresholds (enabling the script to
better support researchers interested in gathering evolving data
sets).transformHgtoZr
,searchForIndustryRelevantGitHubProjects
MadeyskiLewowski.IndustryRelevantGitHubJavaProjects20190324
reproduceTablesOfPaperMetaAnalysisForFamiliesOfExperiments
ExtractMAStatistics
function: it
works with metafor
version 2.0-0, but changes to metafor’s
method of providing access to its individual results may introduce
errors into the function.calculateSmallSampleSizeAdjustment
,
constructEffectSizes
, transformRtoZr
,
transformZrtoR
, transformHgtoR
,
calculateHg
, transformRtoHg
,
transformZrtoHgapprox
, transformZrtoHg
,
PrepareForMetaAnalysisGtoR
,
ExtractMAStatistics
,
aggregateIndividualDocumentStatistics
,
reproduceTablesOfPaperMetaAnalysisForFamiliesOfExperiments
.KitchenhamMadeyskiBrereton.MetaAnalysisReportedResults
,
KitchenhamMadeyskiBrereton.ABBAMetaAnalysisReportedResults
,
KitchenhamMadeyskiBrereton.ReportedEffectSizes
,
KitchenhamMadeyskiBrereton.ABBAReportedEffectSizes
KitchenhamMadeyskiBrereton.ExpData
, and
KitchenhamMadeyskiBrereton.DocData
MadeyskiKitchenham.EUBASdata
and
functions getEffectSizesABBA
,
effectSizeCI
getTheoreticalEffectSizeVariancesABBA
getSimulationData
,
plotOutcomesForIndividualsInEachSequenceGroup
,
getEffectSizesABBA
, effectSizeCI
effectSizeCI
to calculate 95% Confidence
Intervals (CI) on Standardised Effect Sizes (d) for cross-over
repeated-measures designsreproduceSimulationResultsBasedOn500Reps1000Obs
function
(we agreed to write joint paper with Dr Curtin describing corrections to
his equations to calculate effect size variances for continuous outcomes
of cross-over clinical trials)getSimulationData
plotOutcomesForIndividualsInEachSequenceGroup
getEffectSizesABBA
getEffectSizesABBAIgnoringPeriodEffect
reproduceSimulationResultsBasedOn500Reps1000Obs
percentageInaccuracyOfLargeSampleVarianceApproximation
proportionOfSignificantTValuesUsingCorrectAnalysis
proportionOfSignificantTValuesUsingIncorrectAnalysis
KitchenhamMadeyski.SimulatedCrossoverDataSets
backed by
functions (varianceSimulation
,
getSimulatedCrossoverDataSets
) to reproduce the data
set.cloudOfWords
KitchenhamMadeyskiBudgen16.FINNISH
KitchenhamMadeyskiBudgen16.PolishSubjects
KitchenhamMadeyskiBudgen16.SubjectData
KitchenhamMadeyskiBudgen16.PolishData
KitchenhamMadeyskiBudgen16.DiffInDiffData
KitchenhamMadeyskiBudgen16.COCOMO
densityCurveOnHistogram
boxplotHV
boxplotAndDensityCurveOnHistogram
printXTable
cloudOfWords
reproduceForestPlotRandomEffects
reproduceMixedEffectsAnalysisWithEstimatedVarianceAndExperimentalDesignModerator
reproduceMixedEffectsAnalysisWithExperimentalDesignModerator
reproduceMixedEffectsForestPlotWithExperimentalDesignModerator
reproduceTableWithEffectSizesBasedOnMeanDifferences
reproduceTableWithPossibleModeratingFactors
reproduceTableWithSourceDataByCiolkowski
Ciolkowski09ESEM.MetaAnalysis.PBRvsCBRorAR
MadeyskiKitchenham.MetaAnalysis.PBRvsCBRorAR
Madeyski15EISEJ.StudProjects$STUD
data
setMadeyski15SQJ.NDC
Madeyski15EISEJ.OpenProjects
Madeyski15EISEJ.PropProjects
Madeyski15EISEJ.StudProjects
and functions (for
importing data, visualization and descriptive analyses):readExcelSheet
densityCurveOnHistogram
boxplotHV
boxplotAndDensityCurveOnHistogram
See the package homepage (https://madeyski.e-informatyka.pl/reproducible-research/) for documentation and examples.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.