The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
reportRmd is a package designed to facilitate the reporting of common statistical outputs easily in RMarkdown documents. The package supports pdf, html and word output without any changes to the body of the report. The main features are Table 1 style summaries, combining multiple univariate regression models into a single table, tidy multivariable model output and combining univariate and multivariable regressions into a single table. Single table summaries of median survival times and survival probabilities are also provided. A highly customisable survival curve function, based on ggplot2 can be used to create publication-quality plots. Visualisation plots are also available for bivariate relationships and logistic regression models.
A word of caution:
The reportRmd package is designed to facilitate statistical reporting and does not provide any checks regarding the suitability of the models fit.
Basic summary statistics
data("pembrolizumab")
rm_covsum(data=pembrolizumab,
covs=c('age','sex'))
n=94 | |
---|---|
age | |
Mean (sd) | 57.9 (12.8) |
Median (Min,Max) | 59.1 (21.1, 81.8) |
sex | |
Female | 58 (62) |
Male | 36 (38) |
Set IQR = T
for interquartile range instead of
Min/Max
rm_covsum(data=pembrolizumab,
covs=c('age','sex'),IQR=TRUE)
n=94 | |
---|---|
age | |
Mean (sd) | 57.9 (12.8) |
Median (Q1,Q3) | 59.1 (49.5, 68.7) |
sex | |
Female | 58 (62) |
Male | 36 (38) |
Or all.stats=T
for both
rm_covsum(data=pembrolizumab,
covs=c('age','sex'),all.stats = TRUE)
n=94 | |
---|---|
age | |
Mean (sd) | 57.9 (12.8) |
Median (Q1,Q3) | 59.1 (49.5, 68.7) |
Range (min, max) | (21.1, 81.8) |
sex | |
Female | 58 (62) |
Male | 36 (38) |
This will produce summary statistics by Sex
rm_covsum(data=pembrolizumab, maincov = 'sex',
covs=c('age','pdl1','change_ctdna_group'))
Full Sample (n=94) | Female (n=58) | Male (n=36) | p-value | |
---|---|---|---|---|
age | 0.30 | |||
Mean (sd) | 57.9 (12.8) | 56.9 (12.6) | 59.3 (13.1) | |
Median (Min,Max) | 59.1 (21.1, 81.8) | 56.6 (34.1, 78.2) | 61.2 (21.1, 81.8) | |
pdl1 | 0.76 | |||
Mean (sd) | 13.9 (29.2) | 15.0 (30.5) | 12.1 (27.3) | |
Median (Min,Max) | 0 (0, 100) | 0.5 (0.0, 100.0) | 0 (0, 100) | |
Missing | 1 | 0 | 1 | |
change ctdna group | 0.84 | |||
Decrease from baseline | 33 (45) | 19 (48) | 14 (42) | |
Increase from baseline | 40 (55) | 21 (52) | 19 (58) | |
Missing | 21 | 18 | 3 |
To indicate which statistical test was used use
show.tests=TRUE
rm_covsum(data=pembrolizumab, maincov = 'sex',
covs=c('age','pdl1','change_ctdna_group'),
show.tests=TRUE)
Full Sample (n=94) | Female (n=58) | Male (n=36) | p-value | StatTest | |
---|---|---|---|---|---|
age | 0.30 | Wilcoxon Rank Sum | |||
Mean (sd) | 57.9 (12.8) | 56.9 (12.6) | 59.3 (13.1) | ||
Median (Min,Max) | 59.1 (21.1, 81.8) | 56.6 (34.1, 78.2) | 61.2 (21.1, 81.8) | ||
pdl1 | 0.76 | Wilcoxon Rank Sum | |||
Mean (sd) | 13.9 (29.2) | 15.0 (30.5) | 12.1 (27.3) | ||
Median (Min,Max) | 0 (0, 100) | 0.5 (0.0, 100.0) | 0 (0, 100) | ||
Missing | 1 | 0 | 1 | ||
change ctdna group | 0.84 | Chi Sq | |||
Decrease from baseline | 33 (45) | 19 (48) | 14 (42) | ||
Increase from baseline | 40 (55) | 21 (52) | 19 (58) | ||
Missing | 21 | 18 | 3 |
Effect sizes can be added with effSize = TRUE
. Effect
size measures include the Wilcoxon r for Wilcoxon rank-sum test, Cohen’s
d for t-test, Eta squared for Kruskal Wallis test and ANOVA, and
Cramer’s V for categorical variables.
rm_covsum(data=pembrolizumab, maincov = 'sex',
covs=c('age','pdl1','change_ctdna_group'),
show.tests=TRUE, effSize=TRUE)
Full Sample (n=94) | Female (n=58) | Male (n=36) | p-value | Effect Size | StatTest | |
---|---|---|---|---|---|---|
age | 0.30 | 0.11 | Wilcoxon Rank Sum, Wilcoxon r | |||
Mean (sd) | 57.9 (12.8) | 56.9 (12.6) | 59.3 (13.1) | |||
Median (Min,Max) | 59.1 (21.1, 81.8) | 56.6 (34.1, 78.2) | 61.2 (21.1, 81.8) | |||
pdl1 | 0.76 | 0.031 | Wilcoxon Rank Sum, Wilcoxon r | |||
Mean (sd) | 13.9 (29.2) | 15.0 (30.5) | 12.1 (27.3) | |||
Median (Min,Max) | 0 (0, 100) | 0.5 (0.0, 100.0) | 0 (0, 100) | |||
Missing | 1 | 0 | 1 | |||
change ctdna group | 0.84 | 0.020 | Chi Sq, Cramer’s V | |||
Decrease from baseline | 33 (45) | 19 (48) | 14 (42) | |||
Increase from baseline | 40 (55) | 21 (52) | 19 (58) | |||
Missing | 21 | 18 | 3 |
Group comparisons are non-parametric by default, specify
testcont='ANOVA'
for t-tests/ANOVA
rm_covsum(data=pembrolizumab, maincov = 'sex',
covs=c('age','pdl1'),
testcont='ANOVA',
show.tests=TRUE, effSize=TRUE)
Full Sample (n=94) | Female (n=58) | Male (n=36) | p-value | Effect Size | StatTest | |
---|---|---|---|---|---|---|
age | 0.39 | 0.18 | t-test, Cohen’s d | |||
Mean (sd) | 57.9 (12.8) | 56.9 (12.6) | 59.3 (13.1) | |||
Median (Min,Max) | 59.1 (21.1, 81.8) | 56.6 (34.1, 78.2) | 61.2 (21.1, 81.8) | |||
pdl1 | 0.63 | 0.100 | t-test, Cohen’s d | |||
Mean (sd) | 13.9 (29.2) | 15.0 (30.5) | 12.1 (27.3) | |||
Median (Min,Max) | 0 (0, 100) | 0.5 (0.0, 100.0) | 0 (0, 100) | |||
Missing | 1 | 0 | 1 |
The default is to indicate percentages by columns (ie percentages within columns add to 100)
rm_covsum(data=pembrolizumab, maincov = 'sex',
covs=c('cohort'),
pvalue = FALSE)
Full Sample (n=94) | Female (n=58) | Male (n=36) | |
---|---|---|---|
cohort | |||
A | 16 (17) | 3 (5) | 13 (36) |
B | 18 (19) | 18 (31) | 0 (0) |
C | 18 (19) | 18 (31) | 0 (0) |
D | 12 (13) | 7 (12) | 5 (14) |
E | 30 (32) | 12 (21) | 18 (50) |
But you can also specify to show by row instead
rm_covsum(data=pembrolizumab, maincov = 'sex',
covs=c('cohort'),
pvalue = FALSE,
percentage='row')
Full Sample (n=94) | Female (n=58) | Male (n=36) | |
---|---|---|---|
cohort | |||
A | 16 | 3 (19) | 13 (81) |
B | 18 | 18 (100) | 0 (0) |
C | 18 | 18 (100) | 0 (0) |
D | 12 | 7 (58) | 5 (42) |
E | 30 | 12 (40) | 18 (60) |
Combining multiple univariate regression analyses into a single table
rm_uvsum(data=pembrolizumab, response='orr',
covs=c('age','pdl1','change_ctdna_group'),p.adjust = 'holm')
OR(95%CI) | p-value | N | Event | |
---|---|---|---|---|
age | 0.96 (0.91, 1.00) | 0.089 | 94 | 78 |
pdl1 | 0.97 (0.95, 0.98) | <0.001 | 93 | 77 |
change ctdna group | 0.003 | 73 | 58 | |
Decrease from baseline | Reference | 33 | 19 | |
Increase from baseline | 28.74 (5.20, 540.18) | 40 | 39 |
If the response is continuous linear regression is the default
rm_uvsum(data=pembrolizumab, response='l_size',
covs=c('age','cohort'))
Estimate(95%CI) | p-value | N | |
---|---|---|---|
age | -0.58 (-1.54, 0.38) | 0.23 | 94 |
cohort | <0.001 | 94 | |
A | Reference | 16 | |
B | -38.04 (-74.95, -1.13) | 0.044 | 18 |
C | 20.35 (-16.56, 57.26) | 0.28 | 18 |
D | -24.79 (-65.82, 16.23) | 0.23 | 12 |
E | 31.69 (-1.56, 64.95) | 0.062 | 30 |
…unless two variables are specified and then survival analysis is run
rm_uvsum(data=pembrolizumab, response=c('os_time','os_status'),
covs=c('age','pdl1','change_ctdna_group'))
HR(95%CI) | p-value | N | |
---|---|---|---|
age | 0.99 (0.97, 1.01) | 0.16 | 94 |
pdl1 | 0.99 (0.98, 1.00) | 0.026 | 93 |
change ctdna group | <0.001 | 73 | |
Decrease from baseline | Reference | 33 | |
Increase from baseline | 3.06 (1.62, 5.77) | 40 |
Correlated observations can be handled using GEE
data("ctDNA")
rm_uvsum(response = 'size_change',
covs=c('time','ctdna_status'),
gee=TRUE,
id='id', corstr="exchangeable",
family=gaussian("identity"),
data=ctDNA,showN=TRUE)
Estimate(95%CI) | p-value | N | |
---|---|---|---|
time | -0.12 (-0.44, 0.19) | 0.44 | 262 |
ctdna status | <0.001 | 262 | |
Clearance | Reference | 134 | |
No clearance, decrease from baseline | 61.29 (37.38, 85.20) | <0.001 | 42 |
No clearance, increase from baseline | 82.52 (64.67, 100.37) | <0.001 | 86 |
If you want to check the underlying models, set
returnModels = TRUE
rm_uvsum(response = 'orr',
covs=c('age','sex'),
data=pembrolizumab,returnModels = TRUE)
## $age
##
## Call: glm(formula = orr ~ age, family = binomial, data = data)
##
## Coefficients:
## (Intercept) age
## 4.12269 -0.04231
##
## Degrees of Freedom: 93 Total (i.e. Null); 92 Residual
## Null Deviance: 85.77
## Residual Deviance: 82.53 AIC: 86.53
##
## $sex
##
## Call: glm(formula = orr ~ sex, family = binomial, data = data)
##
## Coefficients:
## (Intercept) sexMale
## 1.9859 -0.8873
##
## Degrees of Freedom: 93 Total (i.e. Null); 92 Residual
## Null Deviance: 85.77
## Residual Deviance: 83.21 AIC: 87.21
To create a nice display for multivariable models the model needs to
first be fit. By default, the variance inflation factor will be shown to
check for multicollinearity. To suppress this column set
vif=FALSE
. Note: variance inflation factors are not
computed (yet) for multilevel or GEE models.
<- glm(orr~change_ctdna_group+pdl1+age,
glm_fit family='binomial',
data = pembrolizumab)
rm_mvsum(glm_fit,p.adjust = 'holm')
OR(95%CI) | p-value | N | Event | VIF | |
---|---|---|---|---|---|
change ctdna group | 0.018 | 73 | 58 | 1.03 | |
Decrease from baseline | Reference | 33 | 19 | ||
Increase from baseline | 23.92 (2.49, 229.77) | 40 | 39 | ||
pdl1 | 0.97 (0.95, 0.99) | 0.022 | 73 | 58 | 1.24 |
age | 0.94 (0.87, 1.01) | 0.078 | 73 | 58 | 1.23 |
p-values can be adjusted for multiple comparisons using any of the
options available in the p.adjust
function. This argument
is also available for univariate models run with rm_uvsum.
rm_mvsum(glm_fit, showN = TRUE, vif=TRUE,p.adjust = 'holm')
OR(95%CI) | p-value | N | Event | VIF | |
---|---|---|---|---|---|
change ctdna group | 0.018 | 73 | 58 | 1.03 | |
Decrease from baseline | Reference | 33 | 19 | ||
Increase from baseline | 23.92 (2.49, 229.77) | 40 | 39 | ||
pdl1 | 0.97 (0.95, 0.99) | 0.022 | 73 | 58 | 1.24 |
age | 0.94 (0.87, 1.01) | 0.078 | 73 | 58 | 1.23 |
To display both models in a single table run the rm_uvsum and
rm_mvsum functions with tableOnly=TRUE
and combine.
<- rm_uvsum(data=pembrolizumab, response='orr',
uvsumTable covs=c('age','sex','pdl1','change_ctdna_group'),tableOnly = TRUE)
<- glm(orr~change_ctdna_group+pdl1,
glm_fit family='binomial',
data = pembrolizumab)
<- rm_mvsum(glm_fit, showN = TRUE,tableOnly = TRUE)
mvsumTable
rm_uv_mv(uvsumTable,mvsumTable)
Unadjusted OR(95%CI) | p | Adjusted OR(95%CI) | p (adj) | |
---|---|---|---|---|
age | 0.96 (0.91, 1.00) | 0.089 | ||
sex | 0.11 | |||
Female | Reference | |||
Male | 0.41 (0.13, 1.22) | |||
pdl1 | 0.97 (0.95, 0.98) | <0.001 | 0.98 (0.96, 1.00) | 0.024 |
change ctdna group | 0.002 | 0.004 | ||
Decrease from baseline | Reference | Reference | ||
Increase from baseline | 28.74 (5.20, 540.18) | 24.71 (2.87, 212.70) |
This can also be done with adjusted p-values, but when combined the raw p-values are dropped
<- rm_uvsum(data=pembrolizumab, response='orr',
uvsumTable covs=c('age','sex','pdl1','change_ctdna_group'),tableOnly = TRUE,p.adjust='holm')
<- glm(orr~change_ctdna_group+pdl1,
glm_fit family='binomial',
data = pembrolizumab)
<- rm_mvsum(glm_fit,tableOnly = TRUE,p.adjust='holm')
mvsumTable
rm_uv_mv(uvsumTable,mvsumTable)
Unadjusted OR(95%CI) | p | Adjusted OR(95%CI) | p (adj) | |
---|---|---|---|---|
age | 0.96 (0.91, 1.00) | 0.18 | ||
sex | 0.18 | |||
Female | Reference | |||
Male | 0.41 (0.13, 1.22) | |||
pdl1 | 0.97 (0.95, 0.98) | <0.001 | 0.98 (0.96, 1.00) | 0.024 |
change ctdna group | 0.005 | 0.007 | ||
Decrease from baseline | Reference | Reference | ||
Increase from baseline | 28.74 (5.20, 540.18) | 24.71 (2.87, 212.70) |
If you need to make changes to the tables, setting
tableOnly=TRUE
will return a data frame for any of the
rm_
functions. Changes can be made, and the table output
using outTable()
<- rm_mvsum(glm_fit, showN = TRUE,tableOnly = TRUE)
mvsumTable names(mvsumTable)[1] <-'Predictor'
outTable(mvsumTable)
Predictor | OR(95%CI) | p-value | N | Event | VIF |
---|---|---|---|---|---|
change ctdna group | 0.004 | 73 | 58 | 1.01 | |
Decrease from baseline | Reference | 33 | 19 | ||
Increase from baseline | 24.71 (2.87, 212.70) | 40 | 39 | ||
pdl1 | 0.98 (0.96, 1.00) | 0.024 | 73 | 58 | 1.01 |
Tables can be nested with the nestTable()
function
<- rm_uvsum(data=subset(pembrolizumab,cohort=='A'),
cohortA response = 'pdl1',
covs=c('age','sex'),
tableOnly = T)
$Cohort <- 'Cohort A'
cohortA<- rm_uvsum(data=subset(pembrolizumab,cohort=='E'),
cohortE response = 'pdl1',
covs=c('age','sex'),
tableOnly = T)
$Cohort <- 'Cohort E'
cohortEnestTable(rbind(cohortA,cohortE),head_col = 'Cohort',to_col = 'Covariate')
Estimate(95%CI) | p-value | N | |
---|---|---|---|
Cohort A | |||
age | 2.94 (-0.70, 6.58) | 0.10 | 15 |
sex | 0.14 | 15 | |
Female | Reference | 3 | |
Male | -40.25 (-96.25, 15.75) | 12 | |
Cohort E | |||
age | -0.44 (-1.02, 0.15) | 0.14 | 30 |
sex | 0.097 | 30 | |
Female | Reference | 12 | |
Male | -14.86 (-32.57, 2.85) | 18 |
Displaying survival probabilities at different times by sex using Kaplan Meier estimates
rm_survsum(data=pembrolizumab,time='os_time',status='os_status',
group="sex",survtimes=seq(12,36,12),survtimeunit='months')
Group | Events/Total | Median (95%CI) | 12months (95% CI) | 24months (95% CI) | 36months (95% CI) |
---|---|---|---|---|---|
Female | 39/58 | 14.29 (9.69, 23.82) | 0.55 (0.44, 0.69) | 0.34 (0.24, 0.50) | 0.29 (0.18, 0.45) |
Male | 25/36 | 11.24 (6.14, 25.33) | 0.50 (0.36, 0.69) | 0.31 (0.18, 0.52) | 0.27 (0.15, 0.48) |
Log Rank Test | ChiSq | 0.5 on 1 df | |||
p-value | 0.46 |
Displaying survival probabilities at different times by sex using Cox PH estimates
rm_survtime(data=pembrolizumab,time='os_time',status='os_status',
strata="sex",survtimes=c(12,24),survtimeunit='mo',type='PH')
Time (mo) | At Risk | Events | Censored | Survival Rate (95% CI) |
---|---|---|---|---|
Overall | 94 | |||
12 | 48 | 44 | 2 | 0.53 (0.44, 0.64) |
24 | 24 | 17 | 7 | 0.33 (0.25, 0.45) |
Female | 58 | |||
12 | 31 | 26 | 1 | 0.55 (0.44, 0.70) |
24 | 16 | 11 | 4 | 0.35 (0.24, 0.50) |
Male | 36 | |||
12 | 17 | 18 | 1 | 0.51 (0.37, 0.70) |
24 | 8 | 6 | 3 | 0.32 (0.19, 0.52) |
Displaying survival probabilities at different times by sex, adjusting for age using Cox PH estimates
rm_survtime(data=pembrolizumab,time='os_time',status='os_status', covs='age',
strata="sex",survtimes=c(12,24),survtimeunit='mo',type='PH')
Time (mo) | At Risk | Events | Censored | Survival Rate (95% CI) |
---|---|---|---|---|
Overall | 94 | |||
12 | 48 | 44 | 2 | 0.54 (0.44, 0.65) |
24 | 24 | 17 | 7 | 0.33 (0.25, 0.45) |
Female | 58 | |||
12 | 31 | 26 | 1 | 0.56 (0.44, 0.70) |
24 | 16 | 11 | 4 | 0.35 (0.24, 0.50) |
Male | 36 | |||
12 | 17 | 18 | 1 | 0.51 (0.37, 0.70) |
24 | 8 | 6 | 3 | 0.31 (0.19, 0.53) |
rm_survdiff(data=pembrolizumab,time='os_time',status='os_status',
covs='sex',strata='cohort',digits=1)
group | N | Observed | Expected | Median (95%CI) |
---|---|---|---|---|
Overall | 94 | 64 | 14.0 (9.0, 20.1) | |
Female | 58 | 39 | 43.0 | 14.3 (9.7, 23.8) |
Male | 36 | 25 | 21.0 | 11.2 (6.1, 25.3) |
Log Rank Test | ChiSq = 1.9 on 1 df | |||
stratified by cohort | p-value = 0.17 |
Variable labels will be shown in the nicenames
argument
is set to TRUE
(the default). Variable labels are set using
the label
attribute of individual variables (assigned using
reportRmd
or another package like haven
).
reportRmd
supports the addition, removal and export of
labels using the following functions:
set_labels
will set labels for a data frame from a
lookup tableset_var_labels
allows you to set individual variable
labels to a data frameclear_labels
removes all labels from a data frameexport_labels
extracts variable labels from a data
frame and returns a data frame of variable names and variable
labelsGet some descriptive stats for the ctDNA data that comes with the
package. The nicenames
argument is TRUE by default so
underscores are replaced by spaces
data(ctDNA)
rm_covsum(data=ctDNA,
covs=c('cohort','ctdna_status','size_change'))
n=270 | |
---|---|
cohort | |
A | 50 (19) |
B | 14 (5) |
C | 18 (7) |
D | 88 (33) |
E | 100 (37) |
ctdna status | |
Clearance | 137 (51) |
No clearance, decrease from baseline | 44 (16) |
No clearance, increase from baseline | 89 (33) |
size change | |
Mean (sd) | -29.7 (52.8) |
Median (Min,Max) | -32.5 (-100.0, 197.1) |
Missing | 8 |
If we have a lookup table of variable names and labels that we
imported from a data dictionary we can set the variable labels for the
data frame and these will be used in the rm_
functions
<- data.frame(var=names(ctDNA),
ctDNA_names label=c('Patient ID',
'Study Cohort',
'Change in ctDNA since baseline',
'Number of weeks on treatment',
'Percentage change in tumour measurement'))
<- set_labels(ctDNA,ctDNA_names)
ctDNA
rm_covsum(data=ctDNA,
covs=c('cohort','ctdna_status','size_change'))
n=270 | |
---|---|
Study Cohort | |
A | 50 (19) |
B | 14 (5) |
C | 18 (7) |
D | 88 (33) |
E | 100 (37) |
Change in ctDNA since baseline | |
Clearance | 137 (51) |
No clearance, decrease from baseline | 44 (16) |
No clearance, increase from baseline | 89 (33) |
Percentage change in tumour measurement | |
Mean (sd) | -29.7 (52.8) |
Median (Min,Max) | -32.5 (-100.0, 197.1) |
Missing | 8 |
Individual labels can be changed with with the
set_var_labels
command
<- set_var_labels(ctDNA,
ctDNA cohort="A new cohort label")
rm_covsum(data=ctDNA,
covs=c('cohort','ctdna_status','size_change'))
n=270 | |
---|---|
A new cohort label | |
A | 50 (19) |
B | 14 (5) |
C | 18 (7) |
D | 88 (33) |
E | 100 (37) |
Change in ctDNA since baseline | |
Clearance | 137 (51) |
No clearance, decrease from baseline | 44 (16) |
No clearance, increase from baseline | 89 (33) |
Percentage change in tumour measurement | |
Mean (sd) | -29.7 (52.8) |
Median (Min,Max) | -32.5 (-100.0, 197.1) |
Missing | 8 |
Extract the variable labels to a data frame
<- extract_labels(ctDNA)
var_labels var_labels
## variable label
## 1 id Patient ID
## 2 cohort A new cohort label
## 3 ctdna_status Change in ctDNA since baseline
## 4 time Number of weeks on treatment
## 5 size_change Percentage change in tumour measurement
Or clear them all
<- clear_labels(ctDNA) ctDNA
These plots are designed for quick inspection of many variables, not for publication. This is the plotting version of rm_uvsum
plotuv(data=pembrolizumab, response='orr',
covs=c('age','cohort','pdl1','change_ctdna_group'))
This will default to linear scale, but can be set to log scale using
logScale=TRUE
forestplotUV(data=pembrolizumab, response='orr',
covs=c('age','sex','pdl1','change_ctdna_group'))
require(ggplot2)
<- glm(orr~change_ctdna_group+pdl1,
glm_fit family='binomial',
data = pembrolizumab)
forestplotMV(glm_fit)
To display odds ratios from univariate and multivariable models in a single forest plot, run the forestplotUV and forestplotMV functions and combine.
<- forestplotUV(data=pembrolizumab, response='orr',
uvFP covs=c('age','sex','pdl1','change_ctdna_group'))
<- glm(orr~change_ctdna_group+pdl1,
glm_fit family='binomial',
data = pembrolizumab)
<- forestplotMV(glm_fit)
mvFP
forestplotUVMV(uvFP,mvFP,showN=T,showEvent=T)
This can also be done with log scale odds ratios (default is linear scale). Number of subjects and/or number of events can also be turned off, as well as different colours used.
<- forestplotUV(data=pembrolizumab, response='orr',
uvFP covs=c('age','sex','pdl1','change_ctdna_group'))
<- glm(orr~change_ctdna_group+pdl1,
glm_fit family='binomial',
data = pembrolizumab)
<- forestplotMV(glm_fit)
mvFP
forestplotUVMV(uvFP,mvFP,showN=F,showEvent=F,colours=c("orange","black","blue"),logScale=T)
ggkmcif(response = c('os_time','os_status'),
cov='cohort',
data=pembrolizumab)
The following options can be set:
Example:
rm_uvsum(response = 'baseline_ctdna',
covs=c('age','sex','l_size','pdl1','tmb'),
data=pembrolizumab)
Estimate(95%CI) | p-value | N | |
---|---|---|---|
age | 0.82 (-10.13, 11.76) | 0.88 | 94 |
sex | 0.69 | 94 | |
Female | Reference | 58 | |
Male | 56.61 (-228.71, 341.93) | 36 | |
l size | 1.21 (-1.12, 3.54) | 0.31 | 94 |
pdl1 | -3.50 (-8.27, 1.27) | 0.15 | 93 |
tmb | 18.78 (-125.18, 162.74) | 0.80 | 94 |
options('reportRmd.digits'=1)
rm_uvsum(response = 'baseline_ctdna',
covs=c('age','sex','l_size','pdl1','tmb'),
data=pembrolizumab)
Estimate(95%CI) | p-value | N | |
---|---|---|---|
age | 0.8 (-10.1, 11.8) | 0.88 | 94 |
sex | 0.69 | 94 | |
Female | Reference | 58 | |
Male | 56.6 (-228.7, 341.9) | 36 | |
l size | 1.2 (-1.1, 3.5) | 0.31 | 94 |
pdl1 | -3.5 (-8.3, 1.3) | 0.15 | 93 |
tmb | 18.8 (-125.2, 162.7) | 0.80 | 94 |
For pdf to be correctly generate when using survival curves it is recommended that the cairo format be used. This can be specified with the following command in the setup code chunk:
knitr::opts_chunk$set(message = FALSE, warning = FALSE,dev="cairo_pdf")
Survival status and ctDNA levels for patients receiving pembrolizumab
A data frame with 94 rows and 15 variables:
Longitudinal changes in tumour size since baseline for patients by changes in ctDNA status (clearance, decrease or increase) since baseline.
A data frame with 270 rows and 5 variables:
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.