The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
First, load the {report}
package:
Let’s start by demonstrating some features with simple tests. The
function report_table()
can be used to create a table for
many R objects.
results <- cor.test(mtcars$mpg, mtcars$wt)
report_table(results)
# Pearson's product-moment correlation
#
# Parameter1 | Parameter2 | r | 95% CI | t(30) | p
# -----------------------------------------------------------------
# mtcars$mpg | mtcars$wt | -0.87 | [-0.93, -0.74] | -9.56 | < .001
#
# Alternative hypothesis: two.sided
We can also obtain a shorter version by running
summary()
on the output (that we are going to store in a
variable called t
- like table)
t <- summary(report_table(results))
t
# Pearson's product-moment correlation
#
# Parameter1 | Parameter2 | r | 95% CI | p
# ---------------------------------------------------------
# mtcars$mpg | mtcars$wt | -0.87 | [-0.93, -0.74] | < .001
#
# Alternative hypothesis: two.sided
In the example above, running just t
ran
print(t)
under the hood, which prints the table inside the
console. However, one can nicely display that table in markdown
documents using display()
.
Parameter1 | Parameter2 | r | 95% CI | p |
---|---|---|---|---|
mtcars\(mpg | mtcars\)wt | -0.87 | (-0.93, -0.74) | < .001 |
Alternative hypothesis: true correlation is not equal to 0
We can further customize this table, by adding significance stars,
display(t,
stars = TRUE,
title = "Table 1",
footer = "Correlation in the mtcars (n = 32) dataset.\n*** p < .001"
)
Parameter1 | Parameter2 | r | 95% CI | p |
---|---|---|---|---|
mtcars\(mpg | mtcars\)wt | -0.87 | (-0.93, -0.74) | < .001*** |
Correlation in the mtcars (n = 32) dataset. *** p < .001
Alternative hypothesis: true correlation is not equal to 0
It works similarly for t-tests.
results <- t.test(mtcars$mpg ~ mtcars$am)
t <- summary(report_table(results))
t
# Difference | 95% CI | t(18.33) | p | Cohen's d | Cohen's d CI
# ----------------------------------------------------------------------------
# -7.24 | [-11.28, -3.21] | -3.77 | 0.001 | -1.41 | [-2.26, -0.53]
#
# Alternative hypothesis: two.sided
Note that, by default, report_table()
prettifies the
printing: that means that the column names and its content is,
underneath, not necessarily what is printed, which can be a bit
confusing. For instance, while the confidence interval CI
appears as one column, it this actually made of three columns! One can
access this raw table as a dataframe:
as.data.frame(t)
# Difference CI CI_low CI_high t df_error
# 1 -7.244939 0.95 -11.28019 -3.209684 -3.767123 18.33225
# p Alternative Cohens_d Cohens_d_CI_low
# 1 0.001373638 two.sided -1.411046 -2.260021
# Cohens_d_CI_high
# 1 -0.5342256
In fact, the function used to prettify the output is called
insight::format_table()
and is accessible to you too, so
that you can prettify the output while keeping it as a data frame.
insight::format_table(as.data.frame(t), stars = TRUE)
# Difference 95% CI t(18.33) p Alternative
# 1 -7.24 [-11.28, -3.21] -3.77 0.001** two.sided
# Cohen's d Cohen's d CI
# 1 -1.41 [-2.26, -0.53]
Also, you can join the results of multiple tables:
results1 <- t.test(mtcars$mpg ~ mtcars$am)
results2 <- t.test(mtcars$wt ~ mtcars$am)
results3 <- t.test(mtcars$qsec ~ mtcars$am)
results <- c(
report_table(results1),
report_table(results2),
report_table(results3)
)
display(results)
Parameter | Group | Mean_Group1 | Mean_Group2 | Difference | 95% CI | t | df | p | Cohen’s d | Cohen’s d CI |
---|---|---|---|---|---|---|---|---|---|---|
mtcars\(mpg | mtcars\)am | 17.15 | 24.39 | -7.24 | (-11.28, -3.21) | -3.77 | 18.33 | 0.001 | -1.41 | (-2.26, -0.53) | |
mtcars\(wt | mtcars\)am | 3.77 | 2.41 | 1.36 | (0.85, 1.86) | 5.49 | 29.23 | < .001 | 1.93 | (1.08, 2.77) | |
mtcars\(qsec | mtcars\)am | 18.18 | 17.36 | 0.82 | (-0.49, 2.14) | 1.29 | 25.53 | 0.209 | 0.46 | (-0.26, 1.18) |
model <- lm(Petal.Length ~ Species * Petal.Width, data = iris)
report_table(model)
# Parameter | Coefficient | 95% CI | t(144) | p | Std. Coef. | Std. Coef. 95% CI | Fit
# ----------------------------------------------------------------------------------------------------------------------------
# (Intercept) | 1.33 | [ 1.07, 1.59] | 10.14 | < .001 | -1.01 | [-1.53, -0.48] |
# Species [versicolor] | 0.45 | [-0.28, 1.19] | 1.21 | 0.227 | 1.16 | [ 0.63, 1.69] |
# Species [virginica] | 2.91 | [ 2.11, 3.72] | 7.17 | < .001 | 1.72 | [ 1.16, 2.28] |
# Petal Width | 0.55 | [-0.42, 1.52] | 1.12 | 0.267 | 0.24 | [-0.18, 0.65] |
# Species [versicolor] × Petal Width | 1.32 | [ 0.23, 2.42] | 2.38 | 0.019 | 0.57 | [ 0.10, 1.05] |
# Species [virginica] × Petal Width | 0.10 | [-0.94, 1.14] | 0.19 | 0.848 | 0.04 | [-0.40, 0.49] |
# | | | | | | |
# AIC | | | | | | | 128.29
# AICc | | | | | | | 129.08
# BIC | | | | | | | 149.36
# R2 | | | | | | | 0.96
# R2 (adj.) | | | | | | | 0.96
# Sigma | | | | | | | 0.36
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.