The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
repfun:::rfenv$G_POPDATA %>% dplyr::mutate(TRT01AN=ifelse(TRT01A=='Placebo',1,ifelse(TRT01A=='Xanomeline Low Dose',2,3))) -> G_POPDATA
attr(G_POPDATA$TRT01AN,"label") <- 'Actual Treatment for Period 01 (n)'
repfun:::rfenv$adamdata$advs.rda() %>% dplyr::filter(ANL01FL=='Y') %>%
dplyr::mutate(TRT01AN=ifelse(TRT01A=='Placebo',1,ifelse(TRT01A=='Xanomeline Low Dose',2,3))) %>%
dplyr::filter(!is.na(AVISITN) & (DTYPE=='AVERAGE')) -> advs2
attr(advs2$TRT01AN,"label") <- 'Actual Treatment for Period 01 (n)'repfun::ru_sumstats(G_POPDATA,
analysisvars=c("AGE","TRTDURD"),
groupbyvars=c("STUDYID","TRT01AN"),
codedecodevarpairs=c("TRT01AN", "TRT01A"),
totalforvar="TRT01AN", totalid=99,
totaldecode="Total",
statsinrowsyn = "Y",
analysisvardps=list("AGE"=1,"TRTDURD"=2),
statslist=c("n", "mean", "median", "sd", "min", "max")) %>%
dplyr::arrange(tt_avid, TRT01AN,tt_svid) %>% dplyr::select(-tt_result_num) -> basecharslbls <- sapply(basechars,function(x){attr(x,"label")})
knitr::kable(head(basechars,10), col.names=paste(names(lbls),lbls,sep=" "),
caption = "Summary Statistics for Baseline Characteristics")| STUDYID Study Identifier | TRT01AN Actual Treatment for Period 01 (n) | TRT01A Actual Treatment for Period 01 | tt_result Result | tt_svid Statistical Parameter ID | tt_svnm Statistical Parameter Name | tt_avid Analysis Variable ID | tt_avnm Analysis Variable Name |
|---|---|---|---|---|---|---|---|
| CDISCPILOT01 | 1 | Placebo | 86 | 1 | n | 1 | AGE |
| CDISCPILOT01 | 1 | Placebo | 75.21 | 2 | Mean | 1 | AGE |
| CDISCPILOT01 | 1 | Placebo | 76.00 | 3 | Median | 1 | AGE |
| CDISCPILOT01 | 1 | Placebo | 8.590 | 4 | SD | 1 | AGE |
| CDISCPILOT01 | 1 | Placebo | 52.0 | 5 | Min | 1 | AGE |
| CDISCPILOT01 | 1 | Placebo | 89.0 | 6 | Max | 1 | AGE |
| CDISCPILOT01 | 2 | Xanomeline Low Dose | 96 | 1 | n | 1 | AGE |
| CDISCPILOT01 | 2 | Xanomeline Low Dose | 75.96 | 2 | Mean | 1 | AGE |
| CDISCPILOT01 | 2 | Xanomeline Low Dose | 78.00 | 3 | Median | 1 | AGE |
| CDISCPILOT01 | 2 | Xanomeline Low Dose | 8.114 | 4 | SD | 1 | AGE |
repfun::ru_sumstats(advs2,
analysisvars=c("AVAL"),
groupbyvars=c("STUDYID","TRT01AN","PARAMCD","AVISITN"),
codedecodevarpairs=c("TRT01AN","TRT01A","PARAMCD","PARAM","AVISITN","AVISIT"),
totalforvar="TRT01AN",
totalid=99,
totaldecode="Total",
statsinrowsyn = "Y",
analysisvardps=1,
statslist=c("n","mean","median","sd","min","max")) %>%
dplyr::arrange(TRT01AN,PARAMCD,AVISITN, tt_svid) %>%
dplyr::select(-c('tt_avnm','tt_avid','tt_result_num')) -> vtlsignslbls <- sapply(vtlsigns,function(x){attr(x,"label")})
knitr::kable(head(vtlsigns,10), col.names=paste(names(lbls),lbls,sep=" "),
caption = "Summary Statistics for Vital Signs with Constant Precision")| STUDYID Study Identifier | TRT01AN Actual Treatment for Period 01 (n) | TRT01A Actual Treatment for Period 01 | PARAMCD Parameter Code | PARAM Parameter | AVISITN Analysis Visit (N) | AVISIT Analysis Visit | tt_result Result | tt_svid Statistical Parameter ID | tt_svnm Statistical Parameter Name |
|---|---|---|---|---|---|---|---|---|---|
| CDISCPILOT01 | 1 | Placebo | BMI | Body Mass Index(kg/m^2) | 2 | Week 2 | 63 | 1 | n |
| CDISCPILOT01 | 1 | Placebo | BMI | Body Mass Index(kg/m^2) | 2 | Week 2 | 23.29 | 2 | Mean |
| CDISCPILOT01 | 1 | Placebo | BMI | Body Mass Index(kg/m^2) | 2 | Week 2 | 23.04 | 3 | Median |
| CDISCPILOT01 | 1 | Placebo | BMI | Body Mass Index(kg/m^2) | 2 | Week 2 | 3.595 | 4 | SD |
| CDISCPILOT01 | 1 | Placebo | BMI | Body Mass Index(kg/m^2) | 2 | Week 2 | 15.3 | 5 | Min |
| CDISCPILOT01 | 1 | Placebo | BMI | Body Mass Index(kg/m^2) | 2 | Week 2 | 33.6 | 6 | Max |
| CDISCPILOT01 | 1 | Placebo | BMI | Body Mass Index(kg/m^2) | 4 | Week 4 | 59 | 1 | n |
| CDISCPILOT01 | 1 | Placebo | BMI | Body Mass Index(kg/m^2) | 4 | Week 4 | 23.17 | 2 | Mean |
| CDISCPILOT01 | 1 | Placebo | BMI | Body Mass Index(kg/m^2) | 4 | Week 4 | 23.01 | 3 | Median |
| CDISCPILOT01 | 1 | Placebo | BMI | Body Mass Index(kg/m^2) | 4 | Week 4 | 3.401 | 4 | SD |
decodes <- advs2 %>% distinct(PARAMCD, PARAM)
dcodelst <- split(decodes$PARAM, decodes$PARAMCD)
advs2 %>% dplyr::select(STUDYID,USUBJID,TRT01AN,TRT01A,PARAMCD,AVISITN,AVISIT,AVAL) %>%
dplyr::arrange(USUBJID,TRT01AN,TRT01A,AVISITN,AVISIT) %>%
dplyr::group_by(USUBJID,TRT01AN,TRT01A,AVISITN,AVISIT) %>%
tidyr::pivot_wider(names_from=PARAMCD, values_from=AVAL) -> advs2_t
advs2_t <- repfun::ru_labels(advs2_t,varlabels=dcodelst)
repfun::ru_sumstats(advs2_t,
analysisvars=c("BMI","BSA","DIABP","MAP","PULSE","SYSBP","TEMP","WEIGHT"),
groupbyvars=c("STUDYID","TRT01AN","AVISITN"),
codedecodevarpairs=c("TRT01AN","TRT01A","AVISITN","AVISIT"),
totalforvar="TRT01AN", totalid=99,
totaldecode="Total",
statsinrowsyn = "Y",
analysisvardps=list("BMI"=1,"BSA"=2,"DIABP"=3,"MAP"=4,"PULSE"=1,"SYSBP"=2,
"TEMP"=3,"WEIGHT"=4),
statslist=c("n","mean","median","sd","min","max")) %>%
dplyr::left_join(decodes %>% dplyr::mutate(tt_avnm=PARAMCD),by='tt_avnm') %>%
dplyr::arrange(tt_avid, TRT01AN, AVISITN, tt_svid) %>%
dplyr::select(-c('tt_result_num','tt_avnm')) %>%
dplyr::arrange(PARAMCD,TRT01AN,AVISITN) -> vtlsigns_tlbls <- sapply(vtlsigns_t,function(x){attr(x,"label")})
knitr::kable(head(vtlsigns_t,10), col.names=paste(names(lbls),lbls,sep=" "),
caption = "Summary Statistics for Vital Signs with Varying Precision")| STUDYID Study Identifier | TRT01AN Actual Treatment for Period 01 (n) | TRT01A Actual Treatment for Period 01 | AVISITN Analysis Visit (N) | AVISIT Analysis Visit | tt_result Result | tt_svid Statistical Parameter ID | tt_svnm Statistical Parameter Name | tt_avid Analysis Variable ID | PARAMCD Parameter Code | PARAM Parameter |
|---|---|---|---|---|---|---|---|---|---|---|
| CDISCPILOT01 | 1 | Placebo | 2 | Week 2 | 63 | 1 | n | 1 | BMI | Body Mass Index(kg/m^2) |
| CDISCPILOT01 | 1 | Placebo | 2 | Week 2 | 23.29 | 2 | Mean | 1 | BMI | Body Mass Index(kg/m^2) |
| CDISCPILOT01 | 1 | Placebo | 2 | Week 2 | 23.04 | 3 | Median | 1 | BMI | Body Mass Index(kg/m^2) |
| CDISCPILOT01 | 1 | Placebo | 2 | Week 2 | 3.595 | 4 | SD | 1 | BMI | Body Mass Index(kg/m^2) |
| CDISCPILOT01 | 1 | Placebo | 2 | Week 2 | 15.3 | 5 | Min | 1 | BMI | Body Mass Index(kg/m^2) |
| CDISCPILOT01 | 1 | Placebo | 2 | Week 2 | 33.6 | 6 | Max | 1 | BMI | Body Mass Index(kg/m^2) |
| CDISCPILOT01 | 1 | Placebo | 4 | Week 4 | 59 | 1 | n | 1 | BMI | Body Mass Index(kg/m^2) |
| CDISCPILOT01 | 1 | Placebo | 4 | Week 4 | 23.17 | 2 | Mean | 1 | BMI | Body Mass Index(kg/m^2) |
| CDISCPILOT01 | 1 | Placebo | 4 | Week 4 | 23.01 | 3 | Median | 1 | BMI | Body Mass Index(kg/m^2) |
| CDISCPILOT01 | 1 | Placebo | 4 | Week 4 | 3.401 | 4 | SD | 1 | BMI | Body Mass Index(kg/m^2) |
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.