The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
repfun:::rfenv$G_POPDATA %>% dplyr::mutate(TRT01AN=ifelse(TRT01A=='Placebo',1,ifelse(TRT01A=='Xanomeline Low Dose',2,3)),
SEXN=ifelse(SEX=='F',1,ifelse(SEX=='M',2,NA)),
RACEN=ifelse(RACE=='AMERICAN INDIAN OR ALASKA NATIVE',1,
ifelse(RACE=='BLACK OR AFRICAN AMERICAN',2,
ifelse(RACE=='WHITE',3,NA))),
AGEGR1N=ifelse(AGEGR1=='18-64',1,ifelse(AGEGR1=='>64',2,NA))) %>%
repfun::ru_labels(varlabels=list('TRT01AN'='Actual Treatment for Period 01 (n)','SEXN'='Sex (n)',
'RACEN'='Race (n)','AGEGR1N'='Pooled Age Group 1 (n)')) -> G_POPDATA
G_POPDATA %>% dplyr::select(STUDYID,USUBJID,SAFFL,TRT01AN,TRT01A) -> G_POPDATA1
adae <- repfun:::rfenv$adamdata$adae.rda() %>% dplyr::filter(TRTEMFL=='Y') %>%
dplyr::inner_join(G_POPDATA1, by=c('STUDYID','USUBJID','SAFFL','TRT01A'))aeprod <- repfun::ru_freq(adae,
dsetindenom=G_POPDATA1,
countdistinctvars=c('STUDYID','USUBJID'),
groupbyvarsnumer=c('TRT01AN','TRT01A','AEBODSYS','AEDECOD'),
anyeventvars = c('AEBODSYS','AEDECOD'),
anyeventvalues = c('ANY EVENT','ANY EVENT'),
groupbyvarsdenom=c('TRT01AN'),
resultstyle="NUMERPCT",
totalforvar=c('TRT01AN'),
totalid=99,
totaldecode='Total',
codedecodevarpairs=c("TRT01AN", "TRT01A"),
varcodelistpairs=c(""),
codelistnames=list(),
resultpctdps=2) %>% dplyr::select(TRT01AN,TRT01A,AEBODSYS,AEDECOD,NUMERCNT,
DENOMCNT,PERCENT,tt_result) %>%
dplyr::arrange(TRT01AN,TRT01A,AEBODSYS,AEDECOD)lbls <- sapply(aeprod,function(x){attr(x,"label")})
knitr::kable(head(aeprod,10), col.names=paste(names(lbls),lbls,sep=": "),
caption = "Counts and Percents for AEs by Body System and Preferred Term") %>%
kable_styling(full_width = T) %>% column_spec(c(3,4,8), width_min = c('2in','2in','2in'))| TRT01AN: Actual Treatment for Period 01 (n) | TRT01A: Actual Treatment for Period 01 | AEBODSYS: Body System or Organ Class | AEDECOD: Dictionary-Derived Term | NUMERCNT: Numerator Count | DENOMCNT: Denominator Count | PERCENT: Percent | tt_result: Result |
|---|---|---|---|---|---|---|---|
| 1 | Placebo | ANY EVENT | ANY EVENT | 65 | 86 | 75.581395 | 65 (75.58%) |
| 1 | Placebo | CARDIAC DISORDERS | ANY EVENT | 12 | 86 | 13.953488 | 12 (13.95%) |
| 1 | Placebo | CARDIAC DISORDERS | ATRIAL FIBRILLATION | 1 | 86 | 1.162791 | 1 (1.16%) |
| 1 | Placebo | CARDIAC DISORDERS | ATRIAL FLUTTER | 0 | 86 | 0.000000 | 0 (0.00%) |
| 1 | Placebo | CARDIAC DISORDERS | ATRIAL HYPERTROPHY | 1 | 86 | 1.162791 | 1 (1.16%) |
| 1 | Placebo | CARDIAC DISORDERS | ATRIOVENTRICULAR BLOCK FIRST DEGREE | 1 | 86 | 1.162791 | 1 (1.16%) |
| 1 | Placebo | CARDIAC DISORDERS | ATRIOVENTRICULAR BLOCK SECOND DEGREE | 1 | 86 | 1.162791 | 1 (1.16%) |
| 1 | Placebo | CARDIAC DISORDERS | BRADYCARDIA | 1 | 86 | 1.162791 | 1 (1.16%) |
| 1 | Placebo | CARDIAC DISORDERS | BUNDLE BRANCH BLOCK LEFT | 1 | 86 | 1.162791 | 1 (1.16%) |
| 1 | Placebo | CARDIAC DISORDERS | BUNDLE BRANCH BLOCK RIGHT | 1 | 86 | 1.162791 | 1 (1.16%) |
aeprod2 <- repfun::ru_freq(adae,
dsetindenom=G_POPDATA1,
countdistinctvars=c('STUDYID','USUBJID'),
groupbyvarsnumer=c('TRT01AN','TRT01A','AEDECOD'),
anyeventvars = c('AEDECOD'),
anyeventvalues = c('ANY EVENT'),
groupbyvarsdenom=c('TRT01AN'),
resultstyle="NUMERPCT",
totalforvar=c('TRT01AN'),
totalid=99,
totaldecode='Total',
codedecodevarpairs=c("TRT01AN", "TRT01A"),
varcodelistpairs=c(""),
codelistnames=list(),
resultpctdps=2) %>% dplyr::select(TRT01AN,TRT01A,AEDECOD,NUMERCNT,
DENOMCNT,PERCENT,tt_result) %>%
dplyr::arrange(TRT01AN,TRT01A,AEDECOD)lbls <- sapply(aeprod2,function(x){attr(x,"label")})
knitr::kable(head(aeprod2,10), col.names=paste(names(lbls),lbls,sep=": "),
caption = "Counts and Percents for AEs by Preferred Term Only") %>%
kable_styling(full_width = T) %>% column_spec(c(3,7), width_min = c('2in','2in'))| TRT01AN: Actual Treatment for Period 01 (n) | TRT01A: Actual Treatment for Period 01 | AEDECOD: Dictionary-Derived Term | NUMERCNT: Numerator Count | DENOMCNT: Denominator Count | PERCENT: Percent | tt_result: Result |
|---|---|---|---|---|---|---|
| 1 | Placebo | ABDOMINAL DISCOMFORT | 0 | 86 | 0.000000 | 0 (0.00%) |
| 1 | Placebo | ABDOMINAL PAIN | 1 | 86 | 1.162791 | 1 (1.16%) |
| 1 | Placebo | ACROCHORDON EXCISION | 0 | 86 | 0.000000 | 0 (0.00%) |
| 1 | Placebo | ACTINIC KERATOSIS | 0 | 86 | 0.000000 | 0 (0.00%) |
| 1 | Placebo | AGITATION | 2 | 86 | 2.325581 | 2 (2.33%) |
| 1 | Placebo | ALCOHOL USE | 0 | 86 | 0.000000 | 0 (0.00%) |
| 1 | Placebo | ALLERGIC GRANULOMATOUS ANGIITIS | 0 | 86 | 0.000000 | 0 (0.00%) |
| 1 | Placebo | ALOPECIA | 1 | 86 | 1.162791 | 1 (1.16%) |
| 1 | Placebo | AMNESIA | 0 | 86 | 0.000000 | 0 (0.00%) |
| 1 | Placebo | ANXIETY | 0 | 86 | 0.000000 | 0 (0.00%) |
G_POPDATA %>% dplyr::select(STUDYID,USUBJID,SAFFL,TRT01AN,TRT01A,SEXN,SEX,
RACEN,RACE,AGEGR1N,AGEGR1) -> G_POPDATA2
dflst <- list()
basechar <- data.frame()
i <- 1
for(v in c('AGEGR1','SEX','RACE')){
lbl <- attr(G_POPDATA[[v]],'label')
dflst[[v]] <- repfun::ru_freq(G_POPDATA2, dsetindenom=G_POPDATA2,
countdistinctvars=c("STUDYID", "USUBJID"),
groupbyvarsnumer=c("STUDYID", "TRT01AN", paste0(v,'N')),
anyeventvars = NULL, anyeventvalues = NULL, groupminmaxvar=NULL,
totalforvar=c("TRT01AN"), totalid = 99, totaldecode = 'Total',
groupbyvarsdenom=c("STUDYID", "TRT01AN"), resultstyle="NUMERPCT",
codedecodevarpairs=c("TRT01AN", "TRT01A", paste0(v,'N'), v),
varcodelistpairs=c(""), codelistnames=list(), resultpctdps=0) %>%
{. ->> LBLS} %>%
dplyr::mutate(tt_avid=i, tt_avnm=lbl) %>%
rename(tt_svid=as.name(paste0(v,'N')), tt_svnm=as.name(v)) %>%
dplyr::select(tt_avid,tt_avnm,TRT01AN,TRT01A,tt_svid,tt_svnm,NUMERCNT,
DENOMCNT,PERCENT,tt_result) %>%
dplyr::mutate(tt_avnm=paste0(tt_avnm,', n (%)'))
row.names(dflst[[v]]) <- NULL
basechar <- bind_rows(basechar,dflst[[v]])
i <- i+1
}
basechar <- basechar %>% dplyr::arrange(TRT01AN,TRT01A,tt_avid,tt_avnm,tt_svid,tt_svnm)
for (v in names(basechar)){
if (v %in% names(LBLS)){
attr(basechar[[v]],"label") <- attr(LBLS[[v]],"label")
}
}
basechar <- repfun::ru_labels(basechar,varlabels=list('tt_svid'='Variable Order',
'tt_svnm'='Variable Name',
'tt_avid'='Value Order',
'tt_avnm'='Value Name')) %>%
dplyr::arrange(tt_avid,tt_svid)lbls <- sapply(basechar,function(x){attr(x,"label")})
knitr::kable(head(basechar,10), col.names=paste(names(lbls),lbls,sep=": "),
caption = "Counts and Percents for Demographic Data") %>%
kable_styling(full_width = T) %>%
column_spec(c(2,4,6,10), width_min = c('2in','2in','3in','2in'))| tt_avid: Value Order | tt_avnm: Value Name | TRT01AN: Actual Treatment for Period 01 (n) | TRT01A: Actual Treatment for Period 01 | tt_svid: Variable Order | tt_svnm: Variable Name | NUMERCNT: Numerator Count | DENOMCNT: Denominator Count | PERCENT: Percent | tt_result: Result |
|---|---|---|---|---|---|---|---|---|---|
| 1 | Pooled Age Group 1, n (%) | 1 | Placebo | 1 | 18-64 | 14 | 86 | 16.279070 | 14 (16%) |
| 1 | Pooled Age Group 1, n (%) | 2 | Xanomeline Low Dose | 1 | 18-64 | 8 | 96 | 8.333333 | 8 (8%) |
| 1 | Pooled Age Group 1, n (%) | 3 | Xanomeline High Dose | 1 | 18-64 | 11 | 72 | 15.277778 | 11 (15%) |
| 1 | Pooled Age Group 1, n (%) | 99 | Total | 1 | 18-64 | 33 | 254 | 12.992126 | 33 (13%) |
| 1 | Pooled Age Group 1, n (%) | 1 | Placebo | 2 | >64 | 72 | 86 | 83.720930 | 72 (84%) |
| 1 | Pooled Age Group 1, n (%) | 2 | Xanomeline Low Dose | 2 | >64 | 88 | 96 | 91.666667 | 88 (92%) |
| 1 | Pooled Age Group 1, n (%) | 3 | Xanomeline High Dose | 2 | >64 | 61 | 72 | 84.722222 | 61 (85%) |
| 1 | Pooled Age Group 1, n (%) | 99 | Total | 2 | >64 | 221 | 254 | 87.007874 | 221 (87%) |
| 2 | Sex, n (%) | 1 | Placebo | 1 | F | 53 | 86 | 61.627907 | 53 (62%) |
| 2 | Sex, n (%) | 2 | Xanomeline Low Dose | 1 | F | 55 | 96 | 57.291667 | 55 (57%) |
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.