The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
tmpdr <- tempdir()
datdir <- file.path(gsub("\\","/",tmpdr,fixed=TRUE),"datdir")
dir.create(datdir,showWarnings=FALSE)
repfun::copydata(datdir)
repfun::rs_setup(D_POP="SAFFL",D_POPLBL="Safety",D_POPDATA=repfun::adsl %>%
dplyr::filter(SAFFL =='Y'), D_SUBJID=c("STUDYID","USUBJID"), R_ADAMDATA=datdir)
repfun:::rfenv$G_POPDATA %>% dplyr::mutate(TRT01AN=ifelse(TRT01A=='Placebo',1,ifelse(TRT01A=='Xanomeline Low Dose',2,3))) %>%
repfun::ru_labels(varlabels=list('TRT01AN'='Actual Treatment for Period 01 (n)')) -> G_POPDATAaesum <- repfun::ru_freq(adae,
dsetindenom=G_POPDATA,
countdistinctvars=c('STUDYID','USUBJID'),
groupbyvarsnumer=c('TRT01AN','TRT01A','AEBODSYS','AEDECOD'),
anyeventvars = c('AEBODSYS','AEDECOD'),
anyeventvalues = c('ANY EVENT','ANY EVENT'),
groupbyvarsdenom=c('TRT01AN'),
resultstyle="NUMERPCT",
totalforvar=c('TRT01AN'),
totalid=99,
totaldecode='Total',
codedecodevarpairs=c("TRT01AN", "TRT01A"),
varcodelistpairs=c(""),
codelistnames=list(),
resultpctdps=0)print("Aligned Reporting Data Set for AE Counts and Percents")
#> [1] "Aligned Reporting Data Set for AE Counts and Percents"
print(head(aesum_t_a,10))
#> AEBODSYS AEDECOD tt_ac01
#> 1 ANY EVENT ANY EVENT 69 (80%)
#> 2 CARDIAC DISORDERS ANY EVENT 13 (15%)
#> 3 CONGENITAL, FAMILIAL AND GENETIC DISORDERS ANY EVENT 0 (0%)
#> 4 EAR AND LABYRINTH DISORDERS ANY EVENT 1 (1%)
#> 5 EYE DISORDERS ANY EVENT 4 (5%)
#> 6 GASTROINTESTINAL DISORDERS ANY EVENT 17 (20%)
#> 7 GENERAL DISORDERS AND ADMINISTRATION SITE CONDITIONS ANY EVENT 21 (24%)
#> 8 HEPATOBILIARY DISORDERS ANY EVENT 1 (1%)
#> 9 IMMUNE SYSTEM DISORDERS ANY EVENT 0 (0%)
#> 10 INFECTIONS AND INFESTATIONS ANY EVENT 16 (19%)
#> tt_ac02 tt_ac03 tt_ac99
#> 1 86 (90%) 70 (97%) 225 (89%)
#> 2 16 (17%) 15 (21%) 44 (17%)
#> 3 1 (1%) 2 (3%) 3 (1%)
#> 4 2 (2%) 1 (1%) 4 (2%)
#> 5 2 (2%) 1 (1%) 7 (3%)
#> 6 16 (17%) 20 (28%) 53 (21%)
#> 7 51 (53%) 36 (50%) 108 (43%)
#> 8 0 (0%) 0 (0%) 1 (0%)
#> 9 1 (1%) 1 (1%) 2 (1%)
#> 10 10 (10%) 13 (18%) 39 (15%)demstats <- repfun::ru_sumstats(G_POPDATA,
analysisvars=c("AGE","TRTDURD"),
groupbyvars=c("STUDYID","TRT01AN"),
codedecodevarpairs=c("TRT01AN", "TRT01A"),
totalforvar="TRT01AN", totalid=99,
totaldecode="Total",
statsinrowsyn = "Y",
analysisvardps=list("AGE"=1,"TRTDURD"=2),
statslist=c("n", "mean", "median", "sd", "min", "max"))print("Aligned Reporting Data Set for Baseline Characteristics Summary Stats")
#> [1] "Aligned Reporting Data Set for Baseline Characteristics Summary Stats"
print(head(demstats_t_a,10))
#> tt_avid tt_avnm tt_svid tt_svnm tt_ac01 tt_ac02 tt_ac03 tt_ac99
#> 1 1 AGE 1 n 86 96 72 254
#> 2 1 AGE 2 Mean 75.21 75.96 73.78 75.09
#> 3 1 AGE 3 Median 76.00 78.00 75.50 77.00
#> 4 1 AGE 4 SD 8.590 8.114 7.944 8.246
#> 5 1 AGE 5 Min 52.0 51.0 56.0 51.0
#> 6 1 AGE 6 Max 89.0 88.0 88.0 89.0
#> 7 2 TRTDURD 1 n 85 95 72 252
#> 8 2 TRTDURD 2 Mean 149.541 86.811 112.222 115.230
#> 9 2 TRTDURD 3 Median 182.000 63.000 96.500 132.000
#> 10 2 TRTDURD 4 SD 60.3544 70.4737 65.5233 70.7137These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.