The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
This function makes it really easy to get all all your t-test results in one simple, publication-ready table.
Let’s first load the demo data. This data set comes with base
R
(meaning you have it too and can directly type this
command into your R
console).
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
Load the rempsyc
package:
Note: If you haven’t installed this package yet, you will need to install it via the following command:
install.packages("rempsyc")
. Furthermore, you may be asked to install the following packages if you haven’t installed them already (you may decide to install them all now to avoid interrupting your workflow if you wish to follow this tutorial from beginning to end):
## Dependent Variable t df p d CI_lower
## 1 mpg -3.767123 18.33225 0.001373638 -1.477947 -2.265973
## CI_upper
## 1 -0.6705684
Note: This function relies on the base R
t.test
function, which uses the Welch t-test per default (see why here: https://daniellakens.blogspot.com/2015/01/always-use-welchs-t-test-instead-of.html). To use the Student t-test, simply add the following argument:var.equal = TRUE
.
Now the best thing about this function is that you can put all your dependent variables of interest in the function call and it will output a sweet, pre-formatted table for your convenience.
t.test.results <- nice_t_test(
data = mtcars,
response = names(mtcars)[1:6],
group = "am",
warning = FALSE
)
t.test.results
## Dependent Variable t df p d CI_lower
## 1 mpg -3.767123 18.33225 1.373638e-03 -1.4779471 -2.2659732
## 2 cyl 3.354114 25.85363 2.464713e-03 1.2084550 0.4315895
## 3 disp 4.197727 29.25845 2.300413e-04 1.4452210 0.6417836
## 4 hp 1.266189 18.71541 2.209796e-01 0.4943081 -0.2260463
## 5 drat -5.646088 27.19780 5.266742e-06 -2.0030843 -2.8592770
## 6 wt 5.493905 29.23352 6.272020e-06 1.8924060 1.0300224
## CI_upper
## 1 -0.6705684
## 2 1.9683142
## 3 2.2295594
## 4 1.2066995
## 5 -1.1245499
## 6 2.7329219
If we want it to look nice
Dependent Variable | t | df | p | d | 95% CI |
---|---|---|---|---|---|
mpg | -3.77 | 18.33 | .001** | -1.48 | [-2.27, -0.67] |
cyl | 3.35 | 25.85 | .002** | 1.21 | [0.43, 1.97] |
disp | 4.20 | 29.26 | < .001*** | 1.45 | [0.64, 2.23] |
hp | 1.27 | 18.72 | .221 | 0.49 | [-0.23, 1.21] |
drat | -5.65 | 27.20 | < .001*** | -2.00 | [-2.86, -1.12] |
wt | 5.49 | 29.23 | < .001*** | 1.89 | [1.03, 2.73] |
Note: The d is Cohen’s d, and the 95% CI is the confidence interval of the effect size (Cohen’s d). p is the p-value, df is degrees of freedom, and t is the t-value.
The function can be passed some of the regular arguments of the base
t.test()
function. For example:
Dependent Variable | t | df | p | d | 95% CI |
---|---|---|---|---|---|
mpg | -4.11 | 30 | < .001*** | -1.48 | [-2.27, -0.67] |
nice_t_test(
data = mtcars,
response = "mpg",
group = "am",
alternative = "less",
warning = FALSE
) |>
nice_table()
Dependent Variable | t | df | p | d | 95% CI |
---|---|---|---|---|---|
mpg | -3.77 | 18.33 | .001*** | -1.48 | [-2.27, -0.67] |
Dependent Variable | t | df | p | d | 95% CI |
---|---|---|---|---|---|
mpg | 2.90 | 31 | .007** | 0.51 | [0.14, 0.88] |
Note that for paired t tests, you need to use
paired = TRUE
, and you also need data in “long” format
rather than wide format (like for the ToothGrowth
data
set). In this case, the group
argument refers to the
participant ID for example, so the same group/participant is measured
several times, and thus has several rows.
Note that R >= 4.4.0 has stopped supporting the
paired
argument for the formula method used internally in
nice_t_test()
, but since version 0.1.7.8
, we
use a workaround for backward compatibility.
It is also possible to correct for multiple comparisons. Note that only a Bonferroni correction is supported at this time (which simply multiplies the p-value by the number of tests). Bonferroni will automatically correct for the number of tests.
nice_t_test(
data = mtcars,
response = names(mtcars)[1:6],
group = "am",
correction = "bonferroni",
warning = FALSE
) |>
nice_table()
Dependent Variable | t | df | p | d | 95% CI |
---|---|---|---|---|---|
mpg | -3.77 | 18.33 | .008** | -1.48 | [-2.27, -0.67] |
cyl | 3.35 | 25.85 | .015* | 1.21 | [0.43, 1.97] |
disp | 4.20 | 29.26 | .001** | 1.45 | [0.64, 2.23] |
hp | 1.27 | 18.72 | 1.326 | 0.49 | [-0.23, 1.21] |
drat | -5.65 | 27.20 | < .001*** | -2.00 | [-2.86, -1.12] |
wt | 5.49 | 29.23 | < .001*** | 1.89 | [1.03, 2.73] |
There are other ways to do t-tests and format the results
properly, should you wish—for example through the broom
and
report
packages. Examples below.
broom
table## # A tibble: 1 × 10
## estimate estimate1 estimate2 statistic p.value parameter conf.low conf.high
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 -7.24 17.1 24.4 -3.77 0.00137 18.3 -11.3 -3.21
## # ℹ 2 more variables: method <chr>, alternative <chr>
Method | Alternative | Mean 1 | Mean 2 | M1 - M2 | t | df | p | 95% CI |
---|---|---|---|---|---|---|---|---|
Welch Two Sample t-test | two.sided | 17.15 | 24.39 | -7.24 | -3.77 | 18.33 | .001** | [-11.28, -3.21] |
report
table## Welch Two Sample t-test
##
## Parameter | Group | Mean_Group1 | Mean_Group2 | Difference | 95% CI | t(18.33) | p | d | d CI
## ------------------------------------------------------------------------------------------------------------------------
## mpg | am | 17.15 | 24.39 | -7.24 | [-11.28, -3.21] | -3.77 | 0.001 | -1.76 | [-2.82, -0.67]
##
## Alternative hypothesis: two.sided
Parameter | Group | Mean_Group1 | Mean_Group2 | Difference | t | 95% CI (t) | df | p | Method | Alternative | d | 95% CI (d) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
mpg | am | 17.15 | 24.39 | -7.24 | -3.77 | [-11.28, -3.21] | 18.33 | .001** | Welch Two Sample t-test | two.sided | -1.76 | [-2.82, -0.67] |
The report
package provides quite comprehensive tables,
so one may request an abbreviated table with the short
argument.
Parameter | Group | t | df | p | Method | Alternative | d | 95% CI (d) |
---|---|---|---|---|---|---|---|---|
mpg | am | -3.77 | 18.33 | .001** | Welch Two Sample t-test | two.sided | -1.76 | [-2.82, -0.67] |
And there you go!
Make sure to check out this page again if you use the code after a time or if you encounter errors, as I periodically update or improve the code. Feel free to contact me for comments, questions, or requests to improve this function at https://github.com/rempsyc/rempsyc/issues. See all tutorials here: https://remi-theriault.com/tutorials.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.