The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Title: Regression Data Analysis System
Type: Package
Version: 4.0.4
Depends: R (≥ 4.1)
Imports: DT (≥ 0.27), gbm (≥ 2.2.2), pls (≥ 2.8-1), dplyr (≥ 1.1.0), psych (≥ 2.4.6), shiny (≥ 1.7.4), golem (≥ 0.3.5), rlang (≥ 1.0.6), glmnet (≥ 4.1-6), loadeR (≥ 1.1.3), shinyjs (≥ 2.1.0), traineR (≥ 2.2.0), shinyAce (≥ 0.4.2), echarts4r (≥ 0.4.4), htmltools (≥ 0.5.4), rpart.plot (≥ 3.1.1), shinydashboard (≥ 0.7.2), shinycustomloader (≥ 0.9.0), shinydashboardPlus (≥ 2.0.3)
Description: Perform a supervised data analysis on a database through a 'shiny' graphical interface. It includes methods such as linear regression, penalized regression, k-nearest neighbors, decision trees, ada boosting, extreme gradient boosting, random forest, neural networks, deep learning and support vector machines.
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
Encoding: UTF-8
URL: https://promidat.website/
BugReports: https://github.com/PROMiDAT/predictoR/issues
RoxygenNote: 7.3.2
NeedsCompilation: no
Packaged: 2025-05-28 14:39:56 UTC; r583594
Author: Oldemar Rodriguez [aut, cre], Andres Navarro D. [ctb, prg], Diego Jimenez A. [ctb, prg], Ariel Arroyo S. [ctb, prg], Joseline Quiros M. [ctb, prg]
Maintainer: Oldemar Rodriguez <oldemar.rodriguez@ucr.ac.cr>
Repository: CRAN
Date/Publication: 2025-05-28 20:30:02 UTC

Regression Data Analysis System

Description

Perform a supervised data analysis on a database through a 'shiny' graphical interface. It includes methods such as linear regression, penalized regression, k-nearest neighbors, decision trees, ada boosting, extreme gradient boosting, random forest, neural networks, deep learning and support vector machines.

Details

Package: regressoR
Type: Package
Version: 4.0.2
Date: 2024-11-15
License: GPL (>=2)

Author(s)

Oldemar Rodriguez Rojas
Maintainer: Oldemar Rodriguez Rojas <oldemar.rodriguez@ucr.ac.cr>

See Also

Useful links:


as_string_c

Description

creates a string representative of a vector

Usage

as_string_c(vect, quote = TRUE)

Arguments

vect

a vector with values

quote

a logical value. If TRUE, the values on the vector will be surrounded by quotes.

Examples

as_string_c(c("A", "B", "C"))
as_string_c(c(5, 6, 7))
as_string_c(c(5, 6, 7), quote = FALSE)
as_string_c(iris$Species)


e.rdim.rmse

Description

graph the root mean square error of cross validation according to components used.

Usage

e.rdim.rmse(modelo, ncomp, titles = c("RMSE", "Componente"))

Arguments

modelo

a dimension reduction model.

ncomp

the optimum number of components.

titles

labels on the chart

Value

echarts4r plot

Author(s)

Diego Jimenez <diego.jimenez@promidat.com>


plot_pred_rd

Description

graph of variance explained in the predictors according to components used.

Usage

e.rdim.vare(modelo, ncomp, titles = c("Varianza Explicada", "Componente"))

Arguments

modelo

a dimension reduction model.

ncomp

the optimum number of components.

titles

labels on the chart

Value

echarts4r plot

Author(s)

Ariel Arroyo <luis.ariel.arroyo@promidat.com>


Eval character vectors to JS code

Description

Eval character vectors to JS code

Usage

e_JS(...)

Arguments

...

character vectors to evaluate

Author(s)

Joseline Quiros <joseline.quiros@promidat.com>

Examples

e_JS('5 * 3')


Error Evolution

Description

Error Evolution

Usage

e_boost_evol_error(modelo, label = "Iterations")

Arguments

modelo

a adabag model.

label

a label plot.

Value

echarts4r plot

Author(s)

Joseline Quiros <joseline.quiros@promidat.com>

Examples

model <- traineR::train.gbm(Sepal.Length~., data = iris, 
  distribution = "gaussian", n.trees = 5, shrinkage = 0.01)
e_boost_evol_error(model, iris)


Var importance Adabag

Description

Var importance Adabag

Usage

e_boost_importance(modelo)

Arguments

modelo

a adabag model.

Value

echarts4r plot

Author(s)

Joseline Quiros <joseline.quiros@promidat.com>

Examples

model <- traineR::train.gbm(Sepal.Length~., data = iris, 
  distribution = "gaussian", n.trees = 5, shrinkage = 0.01)
e_boost_importance(model)


Coefficients and lambda

Description

Plot the coefficients and selected lambda of a glmnet model.

Usage

e_coeff_lambda(model, sel.lambda = NULL, label = "Log Lambda")

Arguments

model

a glmnet model.

sel.lambda

the selected lambda.

label

a character specifying the title to use on selected lambda tooltip.

Value

echarts4r plot

Author(s)

Joseline Quiros <joseline.quiros@promidat.com>

Examples

x <- model.matrix(Sepal.Length ~ ., iris)[, -1]
y <- iris$Sepal.Length
modelo <- glmnet::cv.glmnet(x, y, standardize = TRUE, alpha = 1, family = "gaussian")
e_coeff_lambda(modelo, log(modelo$lambda[1]))


Possible lambda

Description

Possible lambda

Usage

e_posib_lambda(
  cv.glm,
  labels = c("Valor Superior", "Valor Inferior", "lambda")
)

Arguments

cv.glm

a cv.glmnet model.

labels

a character vector of length 3 specifying the titles to use on legend.

Value

echarts4r plot

Author(s)

Joseline Quiros <joseline.quiros@promidat.com>

Examples

x         <- model.matrix(Species~., iris)[, -1]
y         <- iris[,'Species']
cv.glm    <- glmnet::cv.glmnet(x, y, standardize = TRUE, alpha = 1, family = 'multinomial')
e_posib_lambda(cv.glm)


Error Evolution

Description

Error Evolution

Usage

e_rf_error(modelo, label = "Trees")

Arguments

modelo

a random forest model.

label

a label plot.

Value

echarts4r plot

Author(s)

Joseline Quiros <joseline.quiros@promidat.com>

Examples

model <- traineR::train.randomForest(Sepal.Length~., iris, mtry = 2, ntree = 20)
e_rf_error(model, "Trees")



Var importance Random Forest

Description

Var importance Random Forest

Usage

e_rndf_importance(modelo, error = "X.IncMSE")

Arguments

modelo

a random forest model.

error

a character specifying the type of importance.

Value

echarts4r plot

Author(s)

Joseline Quiros <joseline.quiros@promidat.com>

Examples

model <- traineR::train.randomForest(Species~., iris, mtry = 2, ntree = 20)
e_rndf_importance(model)


exe

Description

concat and execute a text in R.

Usage

exe(..., envir = parent.frame())

Arguments

...

one or more texts to be concatenated and executed.

envir

the environment in which expr is to be evaluated.

Value

the result of the execute.

Examples

exe("5+5")
exe("5","+","5")
exe("plot(iris$Species)")


extract_code

Description

gets the code of a function in text form.

Usage

extract_code(funcion, envir = parent.frame())

Arguments

funcion

the name of the function to be extracted.

envir

the environment in which expr is to be evaluated.

Examples

extract_code("cat")
extract_code("plot")

parse(text = extract_code("plot"))


general.indices

Description

calculates indices to measure accuracy of a model.

calculates indices to measure accuracy of a model.

Usage

general.indices(real, prediccion)

general.indices(real, prediccion)

Arguments

real

the real values in traning-testing.

prediccion

the prediction values in traning-testing.

Value

a list with the Correlation, Relative Error, Mean Absolute Error and Root Mean Square Error.

a list with the Correlation, Relative Error, Mean Absolute Error and Root Mean Square Error.

Examples

real <- rnorm(45)
prediction <- rnorm(45)
model <- "KNN"
general.indices(real, prediction)

real <- rnorm(45)
prediction <- rnorm(45)
model <- "KNN"
general.indices(real, prediction)


ind_nuevos Server Function

Description

ind_nuevos Server Function

Usage

mod_ind_nuevos_server(input, output, session, newCases, updateData2, codedioma)

plot_real_prediction

Description

scatter plot between the actual value of the variable to be predicted and the prediction of the model.

Usage

plot_real_prediction(real, pred, titles = c("Real", "Prediccion"))

Arguments

real

the real values in traning-testing.

pred

the prediction values in traning-testing.

titles

Labels on the chart

Value

echarts4r plot

Author(s)

Ariel Arroyo <luis.ariel.arroyo@promidat.com>


Run the Shiny Application

Description

Run the Shiny Application

Usage

run_app(...)

Arguments

...

A series of options to be used inside the app.


summary_indices

Description

summarizes a variable by returning the minimum, first quartile, third quartile and maximum value.

Usage

summary_indices(data)

Arguments

data

a numeric vector.

Examples

summary_indices(iris$Sepal.Length)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.