The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The package require all variables to be numerical. So a multi-categorical factor needs to be converted to dummy variables or multiple dichotomous indicators. For survival outcome models, the indicator variable is for the event (1 = event, 0 = censored).
regmedint objectFollowing typical modeling workflow in R (e.g., lm and
glm), a constructor function is used to create a model fit
object. The summary method is the main user function for
examining the results in the object. Lower-level methods such as
coef, vcov, and confint are also
provided for flexibility. The print method is mainly for
meaningful implicit printing when only the object name is evaluated. All
methods for the regmedint object has arguments
a0, a1, m_cde, and
c_cond. These are used to re-evaluate the results without
re-fitting the underlying models.
regemedint() object constructorregmedint_obj <- regmedint(data = vv2015,
                           ## Variables
                           yvar = "y",
                           avar = "x",
                           mvar = "m",
                           cvar = c("c"),
                           eventvar = "event",
                           ## Values at which effects are evaluated
                           a0 = 0,
                           a1 = 1,
                           m_cde = 1,
                           c_cond = 0.5,
                           ## Model types
                           mreg = "logistic",
                           yreg = "survAFT_weibull",
                           ## Additional specification
                           interaction = TRUE,
                           casecontrol = FALSE)summary() for regmedint## ### Mediator model
## 
## Call:
## glm(formula = m ~ x + c, family = binomial(link = "logit"), data = data)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)  -0.3545     0.3252  -1.090    0.276
## x             0.3842     0.4165   0.922    0.356
## c             0.2694     0.2058   1.309    0.191
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 138.59  on 99  degrees of freedom
## Residual deviance: 136.08  on 97  degrees of freedom
## AIC: 142.08
## 
## Number of Fisher Scoring iterations: 4
## 
## ### Outcome model
## 
## Call:
## survival::survreg(formula = Surv(y, event) ~ x + m + x:m + c, 
##     data = data, dist = "weibull")
##               Value Std. Error     z       p
## (Intercept) -1.0424     0.1903 -5.48 4.3e-08
## x            0.4408     0.3008  1.47    0.14
## m            0.0905     0.2683  0.34    0.74
## c           -0.0669     0.0915 -0.73    0.46
## x:m          0.1003     0.4207  0.24    0.81
## Log(scale)  -0.0347     0.0810 -0.43    0.67
## 
## Scale= 0.966 
## 
## Weibull distribution
## Loglik(model)= -11.4   Loglik(intercept only)= -14.5
##  Chisq= 6.31 on 4 degrees of freedom, p= 0.18 
## Number of Newton-Raphson Iterations: 5 
## n= 100 
## 
## ### Mediation analysis 
##              est         se         Z          p       lower      upper
## cde  0.541070807 0.29422958 1.8389409 0.06592388 -0.03560858 1.11775019
## pnde 0.488930417 0.21049248 2.3227928 0.02019028  0.07637274 0.90148809
## tnie 0.018240025 0.03706111 0.4921608 0.62260566 -0.05439841 0.09087846
## tnde 0.498503455 0.21209540 2.3503737 0.01875457  0.08280410 0.91420281
## pnie 0.008666987 0.02730994 0.3173565 0.75097309 -0.04485951 0.06219348
## te   0.507170442 0.21090051 2.4047853 0.01618197  0.09381303 0.92052785
## pm   0.045436278 0.09119614 0.4982259 0.61832484 -0.13330488 0.22417743
## 
## Evaluated at:
## avar: x
##  a1 (intervened value of avar) = 1
##  a0 (reference value of avar)  = 0
## mvar: m
##  m_cde (intervend value of mvar for cde) = 1
## cvar: c
##  c_cond (covariate vector value) = 0.5
## 
## Note that effect estimates can vary over m_cde and c_cond values when interaction = TRUE.## ### Mediator model
## 
## Call:
## glm(formula = m ~ x + c, family = binomial(link = "logit"), data = data)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)  -0.3545     0.3252  -1.090    0.276
## x             0.3842     0.4165   0.922    0.356
## c             0.2694     0.2058   1.309    0.191
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 138.59  on 99  degrees of freedom
## Residual deviance: 136.08  on 97  degrees of freedom
## AIC: 142.08
## 
## Number of Fisher Scoring iterations: 4
## 
## ### Outcome model
## 
## Call:
## survival::survreg(formula = Surv(y, event) ~ x + m + x:m + c, 
##     data = data, dist = "weibull")
##               Value Std. Error     z       p
## (Intercept) -1.0424     0.1903 -5.48 4.3e-08
## x            0.4408     0.3008  1.47    0.14
## m            0.0905     0.2683  0.34    0.74
## c           -0.0669     0.0915 -0.73    0.46
## x:m          0.1003     0.4207  0.24    0.81
## Log(scale)  -0.0347     0.0810 -0.43    0.67
## 
## Scale= 0.966 
## 
## Weibull distribution
## Loglik(model)= -11.4   Loglik(intercept only)= -14.5
##  Chisq= 6.31 on 4 degrees of freedom, p= 0.18 
## Number of Newton-Raphson Iterations: 5 
## n= 100 
## 
## ### Mediation analysis 
##              est         se         Z          p       lower      upper
## cde  0.541070807 0.29422958 1.8389409 0.06592388 -0.03560858 1.11775019
## pnde 0.488930417 0.21049248 2.3227928 0.02019028  0.07637274 0.90148809
## tnie 0.018240025 0.03706111 0.4921608 0.62260566 -0.05439841 0.09087846
## tnde 0.498503455 0.21209540 2.3503737 0.01875457  0.08280410 0.91420281
## pnie 0.008666987 0.02730994 0.3173565 0.75097309 -0.04485951 0.06219348
## te   0.507170442 0.21090051 2.4047853 0.01618197  0.09381303 0.92052785
## pm   0.045436278 0.09119614 0.4982259 0.61832484 -0.13330488 0.22417743
##      exp(est) exp(lower) exp(upper)
## cde  1.717845  0.9650179   3.057967
## pnde 1.630571  1.0793648   2.463266
## tnie 1.018407  0.9470547   1.095136
## tnde 1.646256  1.0863290   2.494786
## pnie 1.008705  0.9561318   1.064168
## te   1.660586  1.0983544   2.510615
## pm         NA         NA         NA
## 
## Evaluated at:
## avar: x
##  a1 (intervened value of avar) = 1
##  a0 (reference value of avar)  = 0
## mvar: m
##  m_cde (intervend value of mvar for cde) = 1
## cvar: c
##  c_cond (covariate vector value) = 0.5
## 
## Note that effect estimates can vary over m_cde and c_cond values when interaction = TRUE.## ### Mediator model
## 
## Call:
## glm(formula = m ~ x + c, family = binomial(link = "logit"), data = data)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)  -0.3545     0.3252  -1.090    0.276
## x             0.3842     0.4165   0.922    0.356
## c             0.2694     0.2058   1.309    0.191
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 138.59  on 99  degrees of freedom
## Residual deviance: 136.08  on 97  degrees of freedom
## AIC: 142.08
## 
## Number of Fisher Scoring iterations: 4
## 
## ### Outcome model
## 
## Call:
## survival::survreg(formula = Surv(y, event) ~ x + m + x:m + c, 
##     data = data, dist = "weibull")
##               Value Std. Error     z       p
## (Intercept) -1.0424     0.1903 -5.48 4.3e-08
## x            0.4408     0.3008  1.47    0.14
## m            0.0905     0.2683  0.34    0.74
## c           -0.0669     0.0915 -0.73    0.46
## x:m          0.1003     0.4207  0.24    0.81
## Log(scale)  -0.0347     0.0810 -0.43    0.67
## 
## Scale= 0.966 
## 
## Weibull distribution
## Loglik(model)= -11.4   Loglik(intercept only)= -14.5
##  Chisq= 6.31 on 4 degrees of freedom, p= 0.18 
## Number of Newton-Raphson Iterations: 5 
## n= 100 
## 
## ### Mediation analysis 
##              est         se         Z          p       lower      upper
## cde  0.440756562 0.30083077 1.4651313 0.14288511 -0.14886090 1.03037403
## pnde 0.492306223 0.21015655 2.3425690 0.01915149  0.08040695 0.90420550
## tnie 0.018077074 0.03653416 0.4947991 0.62074191 -0.05352857 0.08968272
## tnde 0.501765186 0.21433402 2.3410432 0.01922994  0.08167823 0.92185214
## pnie 0.008618111 0.02707487 0.3183067 0.75025232 -0.04444765 0.06168388
## te   0.510383297 0.21212172 2.4060870 0.01612443  0.09463237 0.92613422
## pm   0.044816400 0.08889613 0.5041434 0.61416060 -0.12941682 0.21904962
## 
## Evaluated at:
## avar: x
##  a1 (intervened value of avar) = 1
##  a0 (reference value of avar)  = 0
## mvar: m
##  m_cde (intervend value of mvar for cde) = 0
## cvar: c
##  c_cond (covariate vector value) = 1
## 
## Note that effect estimates can vary over m_cde and c_cond values when interaction = TRUE.## ### Mediator model
## 
## Call:
## glm(formula = m ~ x + c, family = binomial(link = "logit"), data = data)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)  -0.3545     0.3252  -1.090    0.276
## x             0.3842     0.4165   0.922    0.356
## c             0.2694     0.2058   1.309    0.191
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 138.59  on 99  degrees of freedom
## Residual deviance: 136.08  on 97  degrees of freedom
## AIC: 142.08
## 
## Number of Fisher Scoring iterations: 4
## 
## ### Outcome model
## 
## Call:
## survival::survreg(formula = Surv(y, event) ~ x + m + x:m + c, 
##     data = data, dist = "weibull")
##               Value Std. Error     z       p
## (Intercept) -1.0424     0.1903 -5.48 4.3e-08
## x            0.4408     0.3008  1.47    0.14
## m            0.0905     0.2683  0.34    0.74
## c           -0.0669     0.0915 -0.73    0.46
## x:m          0.1003     0.4207  0.24    0.81
## Log(scale)  -0.0347     0.0810 -0.43    0.67
## 
## Scale= 0.966 
## 
## Weibull distribution
## Loglik(model)= -11.4   Loglik(intercept only)= -14.5
##  Chisq= 6.31 on 4 degrees of freedom, p= 0.18 
## Number of Newton-Raphson Iterations: 5 
## n= 100 
## 
## ### Mediation analysis 
##              est         se         Z          p       lower      upper
## cde  0.440756562 0.30083077 1.4651313 0.14288511 -0.33413214 1.21564526
## pnde 0.492306223 0.21015655 2.3425690 0.01915149 -0.04902118 1.03363363
## tnie 0.018077074 0.03653416 0.4947991 0.62074191 -0.07602870 0.11218285
## tnde 0.501765186 0.21433402 2.3410432 0.01922994 -0.05032266 1.05385303
## pnie 0.008618111 0.02707487 0.3183067 0.75025232 -0.06112213 0.07835835
## te   0.510383297 0.21212172 2.4060870 0.01612443 -0.03600604 1.05677263
## pm   0.044816400 0.08889613 0.5041434 0.61416060 -0.18416486 0.27379767
## 
## Evaluated at:
## avar: x
##  a1 (intervened value of avar) = 1
##  a0 (reference value of avar)  = 0
## mvar: m
##  m_cde (intervend value of mvar for cde) = 0
## cvar: c
##  c_cond (covariate vector value) = 1
## 
## Note that effect estimates can vary over m_cde and c_cond values when interaction = TRUE.coef() for regmedint##         cde        pnde        tnie        tnde        pnie          te 
## 0.541070807 0.488930417 0.018240025 0.498503455 0.008666987 0.507170442 
##          pm 
## 0.045436278 
## attr(,"args")
## attr(,"args")$a0
## [1] 0
## 
## attr(,"args")$a1
## [1] 1
## 
## attr(,"args")$m_cde
## [1] 1
## 
## attr(,"args")$c_cond
## [1] 0.5##         cde        pnde        tnie        tnde        pnie          te 
## 0.440756562 0.492306223 0.018077074 0.501765186 0.008618111 0.510383297 
##          pm 
## 0.044816400 
## attr(,"args")
## attr(,"args")$a0
## [1] 0
## 
## attr(,"args")$a1
## [1] 1
## 
## attr(,"args")$m_cde
## [1] 0
## 
## attr(,"args")$c_cond
## [1] 1vcov() for regmedint##             cde       pnde        tnie       tnde         pnie         te
## cde  0.08657105         NA          NA         NA           NA         NA
## pnde         NA 0.04430708          NA         NA           NA         NA
## tnie         NA         NA 0.001373526         NA           NA         NA
## tnde         NA         NA          NA 0.04498446           NA         NA
## pnie         NA         NA          NA         NA 0.0007458327         NA
## te           NA         NA          NA         NA           NA 0.04447903
## pm           NA         NA          NA         NA           NA         NA
##               pm
## cde           NA
## pnde          NA
## tnie          NA
## tnde          NA
## pnie          NA
## te            NA
## pm   0.008316736
## attr(,"args")
## attr(,"args")$a0
## [1] 0
## 
## attr(,"args")$a1
## [1] 1
## 
## attr(,"args")$m_cde
## [1] 1
## 
## attr(,"args")$c_cond
## [1] 0.5##             cde       pnde        tnie       tnde         pnie         te
## cde  0.09049915         NA          NA         NA           NA         NA
## pnde         NA 0.04416578          NA         NA           NA         NA
## tnie         NA         NA 0.001334745         NA           NA         NA
## tnde         NA         NA          NA 0.04593907           NA         NA
## pnie         NA         NA          NA         NA 0.0007330485         NA
## te           NA         NA          NA         NA           NA 0.04499562
## pm           NA         NA          NA         NA           NA         NA
##               pm
## cde           NA
## pnde          NA
## tnie          NA
## tnde          NA
## pnie          NA
## te            NA
## pm   0.007902522
## attr(,"args")
## attr(,"args")$a0
## [1] 0
## 
## attr(,"args")$a1
## [1] 1
## 
## attr(,"args")$m_cde
## [1] 0
## 
## attr(,"args")$c_cond
## [1] 1confint() for regmedint##            lower      upper
## cde  -0.03560858 1.11775019
## pnde  0.07637274 0.90148809
## tnie -0.05439841 0.09087846
## tnde  0.08280410 0.91420281
## pnie -0.04485951 0.06219348
## te    0.09381303 0.92052785
## pm   -0.13330488 0.22417743
## attr(,"args")
## attr(,"args")$a0
## [1] 0
## 
## attr(,"args")$a1
## [1] 1
## 
## attr(,"args")$m_cde
## [1] 1
## 
## attr(,"args")$c_cond
## [1] 0.5##            lower      upper
## cde  -0.14886090 1.03037403
## pnde  0.08040695 0.90420550
## tnie -0.05352857 0.08968272
## tnde  0.08167823 0.92185214
## pnie -0.04444765 0.06168388
## te    0.09463237 0.92613422
## pm   -0.12941682 0.21904962
## attr(,"args")
## attr(,"args")$a0
## [1] 0
## 
## attr(,"args")$a1
## [1] 1
## 
## attr(,"args")$m_cde
## [1] 0
## 
## attr(,"args")$c_cond
## [1] 1##            lower      upper
## cde  -0.33413214 1.21564526
## pnde -0.04902118 1.03363363
## tnie -0.07602870 0.11218285
## tnde -0.05032266 1.05385303
## pnie -0.06112213 0.07835835
## te   -0.03600604 1.05677263
## pm   -0.18416486 0.27379767
## attr(,"args")
## attr(,"args")$a0
## [1] 0
## 
## attr(,"args")$a1
## [1] 1
## 
## attr(,"args")$m_cde
## [1] 0
## 
## attr(,"args")$c_cond
## [1] 1print() for regmedint## ### Mediator model
## 
## Call:  glm(formula = m ~ x + c, family = binomial(link = "logit"), data = data)
## 
## Coefficients:
## (Intercept)            x            c  
##     -0.3545       0.3842       0.2694  
## 
## Degrees of Freedom: 99 Total (i.e. Null);  97 Residual
## Null Deviance:       138.6 
## Residual Deviance: 136.1     AIC: 142.1
## ### Outcome model
## Call:
## survival::survreg(formula = Surv(y, event) ~ x + m + x:m + c, 
##     data = data, dist = "weibull")
## 
## Coefficients:
## (Intercept)           x           m           c         x:m 
## -1.04244118  0.44075656  0.09053705 -0.06689165  0.10031424 
## 
## Scale= 0.9658808 
## 
## Loglik(model)= -11.4   Loglik(intercept only)= -14.5
##  Chisq= 6.31 on 4 degrees of freedom, p= 0.177 
## n= 100 
## ### Mediation analysis 
##         cde        pnde        tnie        tnde        pnie          te 
## 0.541070807 0.488930417 0.018240025 0.498503455 0.008666987 0.507170442 
##          pm 
## 0.045436278## ### Mediator model
## 
## Call:  glm(formula = m ~ x + c, family = binomial(link = "logit"), data = data)
## 
## Coefficients:
## (Intercept)            x            c  
##     -0.3545       0.3842       0.2694  
## 
## Degrees of Freedom: 99 Total (i.e. Null);  97 Residual
## Null Deviance:       138.6 
## Residual Deviance: 136.1     AIC: 142.1
## ### Outcome model
## Call:
## survival::survreg(formula = Surv(y, event) ~ x + m + x:m + c, 
##     data = data, dist = "weibull")
## 
## Coefficients:
## (Intercept)           x           m           c         x:m 
## -1.04244118  0.44075656  0.09053705 -0.06689165  0.10031424 
## 
## Scale= 0.9658808 
## 
## Loglik(model)= -11.4   Loglik(intercept only)= -14.5
##  Chisq= 6.31 on 4 degrees of freedom, p= 0.177 
## n= 100 
## ### Mediation analysis 
##         cde        pnde        tnie        tnde        pnie          te 
## 0.541070807 0.488930417 0.018240025 0.498503455 0.008666987 0.507170442 
##          pm 
## 0.045436278## ### Mediator model
## 
## Call:  glm(formula = m ~ x + c, family = binomial(link = "logit"), data = data)
## 
## Coefficients:
## (Intercept)            x            c  
##     -0.3545       0.3842       0.2694  
## 
## Degrees of Freedom: 99 Total (i.e. Null);  97 Residual
## Null Deviance:       138.6 
## Residual Deviance: 136.1     AIC: 142.1
## ### Outcome model
## Call:
## survival::survreg(formula = Surv(y, event) ~ x + m + x:m + c, 
##     data = data, dist = "weibull")
## 
## Coefficients:
## (Intercept)           x           m           c         x:m 
## -1.04244118  0.44075656  0.09053705 -0.06689165  0.10031424 
## 
## Scale= 0.9658808 
## 
## Loglik(model)= -11.4   Loglik(intercept only)= -14.5
##  Chisq= 6.31 on 4 degrees of freedom, p= 0.177 
## n= 100 
## ### Mediation analysis 
##         cde        pnde        tnie        tnde        pnie          te 
## 0.440756562 0.492306223 0.018077074 0.501765186 0.008618111 0.510383297 
##          pm 
## 0.044816400summary_regmedintThe summary method for the regmedint object
returns an object of class summary_regmedint. To extract
the mediation analysis result table as a matrix, use the
coef method.
coef() for summary_regmedint##              est         se         Z          p       lower      upper
## cde  0.541070807 0.29422958 1.8389409 0.06592388 -0.03560858 1.11775019
## pnde 0.488930417 0.21049248 2.3227928 0.02019028  0.07637274 0.90148809
## tnie 0.018240025 0.03706111 0.4921608 0.62260566 -0.05439841 0.09087846
## tnde 0.498503455 0.21209540 2.3503737 0.01875457  0.08280410 0.91420281
## pnie 0.008666987 0.02730994 0.3173565 0.75097309 -0.04485951 0.06219348
## te   0.507170442 0.21090051 2.4047853 0.01618197  0.09381303 0.92052785
## pm   0.045436278 0.09119614 0.4982259 0.61832484 -0.13330488 0.22417743print() for summary_regmedint## ### Mediator model
## 
## Call:
## glm(formula = m ~ x + c, family = binomial(link = "logit"), data = data)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)  -0.3545     0.3252  -1.090    0.276
## x             0.3842     0.4165   0.922    0.356
## c             0.2694     0.2058   1.309    0.191
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 138.59  on 99  degrees of freedom
## Residual deviance: 136.08  on 97  degrees of freedom
## AIC: 142.08
## 
## Number of Fisher Scoring iterations: 4
## 
## ### Outcome model
## 
## Call:
## survival::survreg(formula = Surv(y, event) ~ x + m + x:m + c, 
##     data = data, dist = "weibull")
##               Value Std. Error     z       p
## (Intercept) -1.0424     0.1903 -5.48 4.3e-08
## x            0.4408     0.3008  1.47    0.14
## m            0.0905     0.2683  0.34    0.74
## c           -0.0669     0.0915 -0.73    0.46
## x:m          0.1003     0.4207  0.24    0.81
## Log(scale)  -0.0347     0.0810 -0.43    0.67
## 
## Scale= 0.966 
## 
## Weibull distribution
## Loglik(model)= -11.4   Loglik(intercept only)= -14.5
##  Chisq= 6.31 on 4 degrees of freedom, p= 0.18 
## Number of Newton-Raphson Iterations: 5 
## n= 100 
## 
## ### Mediation analysis 
##              est         se         Z          p       lower      upper
## cde  0.541070807 0.29422958 1.8389409 0.06592388 -0.03560858 1.11775019
## pnde 0.488930417 0.21049248 2.3227928 0.02019028  0.07637274 0.90148809
## tnie 0.018240025 0.03706111 0.4921608 0.62260566 -0.05439841 0.09087846
## tnde 0.498503455 0.21209540 2.3503737 0.01875457  0.08280410 0.91420281
## pnie 0.008666987 0.02730994 0.3173565 0.75097309 -0.04485951 0.06219348
## te   0.507170442 0.21090051 2.4047853 0.01618197  0.09381303 0.92052785
## pm   0.045436278 0.09119614 0.4982259 0.61832484 -0.13330488 0.22417743
## 
## Evaluated at:
## avar: x
##  a1 (intervened value of avar) = 1
##  a0 (reference value of avar)  = 0
## mvar: m
##  m_cde (intervend value of mvar for cde) = 1
## cvar: c
##  c_cond (covariate vector value) = 0.5
## 
## Note that effect estimates can vary over m_cde and c_cond values when interaction = TRUE.## ### Mediator model
## 
## Call:
## glm(formula = m ~ x + c, family = binomial(link = "logit"), data = data)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)  -0.3545     0.3252  -1.090    0.276
## x             0.3842     0.4165   0.922    0.356
## c             0.2694     0.2058   1.309    0.191
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 138.59  on 99  degrees of freedom
## Residual deviance: 136.08  on 97  degrees of freedom
## AIC: 142.08
## 
## Number of Fisher Scoring iterations: 4
## 
## ### Outcome model
## 
## Call:
## survival::survreg(formula = Surv(y, event) ~ x + m + x:m + c, 
##     data = data, dist = "weibull")
##               Value Std. Error     z       p
## (Intercept) -1.0424     0.1903 -5.48 4.3e-08
## x            0.4408     0.3008  1.47    0.14
## m            0.0905     0.2683  0.34    0.74
## c           -0.0669     0.0915 -0.73    0.46
## x:m          0.1003     0.4207  0.24    0.81
## Log(scale)  -0.0347     0.0810 -0.43    0.67
## 
## Scale= 0.966 
## 
## Weibull distribution
## Loglik(model)= -11.4   Loglik(intercept only)= -14.5
##  Chisq= 6.31 on 4 degrees of freedom, p= 0.18 
## Number of Newton-Raphson Iterations: 5 
## n= 100 
## 
## ### Mediation analysis 
##              est         se         Z          p       lower      upper
## cde  0.541070807 0.29422958 1.8389409 0.06592388 -0.03560858 1.11775019
## pnde 0.488930417 0.21049248 2.3227928 0.02019028  0.07637274 0.90148809
## tnie 0.018240025 0.03706111 0.4921608 0.62260566 -0.05439841 0.09087846
## tnde 0.498503455 0.21209540 2.3503737 0.01875457  0.08280410 0.91420281
## pnie 0.008666987 0.02730994 0.3173565 0.75097309 -0.04485951 0.06219348
## te   0.507170442 0.21090051 2.4047853 0.01618197  0.09381303 0.92052785
## pm   0.045436278 0.09119614 0.4982259 0.61832484 -0.13330488 0.22417743
## 
## Evaluated at:
## avar: x
##  a1 (intervened value of avar) = 1
##  a0 (reference value of avar)  = 0
## mvar: m
##  m_cde (intervend value of mvar for cde) = 1
## cvar: c
##  c_cond (covariate vector value) = 0.5
## 
## Note that effect estimates can vary over m_cde and c_cond values when interaction = TRUE.These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.