The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
In this vignette, I will examine assessments specific to Benin. I will walk through three types of visualizations:
Refer to this vignette to learn more about how to access the data.
# Load the package
library(redlist)
# Get all data on Benin
benin_rl <- rl_countries(code = "BJ", page = NA)
# Basic overview
glimpse(benin_rl)
#> Rows: 9,786
#> Columns: 15
#> $ country_description_en <chr> "Benin", "Benin", "Benin", "B…
#> $ country_code <chr> "BJ", "BJ", "BJ", "BJ", "BJ",…
#> $ assessments_year_published <dbl> 2013, 2025, 2014, 2013, 2014,…
#> $ assessments_latest <lgl> FALSE, TRUE, TRUE, TRUE, TRUE…
#> $ assessments_possibly_extinct <lgl> FALSE, FALSE, FALSE, FALSE, F…
#> $ assessments_possibly_extinct_in_the_wild <lgl> FALSE, FALSE, FALSE, FALSE, F…
#> $ assessments_sis_taxon_id <dbl> 137286, 137829, 137859, 13795…
#> $ assessments_url <chr> "https://www.iucnredlist.org/…
#> $ assessments_taxon_scientific_name <chr> "Caccobius ferrugineus", "Gar…
#> $ assessments_red_list_category_code <chr> "LC", "LC", "LC", "LC", "LC",…
#> $ assessments_assessment_id <dbl> 522738, 531737, 532227, 53393…
#> $ assessments_code <chr> "BJ", "BJ", "BJ", "BJ", "BJ",…
#> $ assessments_code_type <chr> "country", "country", "countr…
#> $ assessments_scopes_description_en <chr> "Global", "Global", "Global",…
#> $ assessments_scopes_code <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,…
The dataset includes all species assessed in Benin across various taxonomic groups — including plants, animals, fungi, and other organisms.
Understanding the volume of assessments over time gives insight into conservation attention and effort.
benin_rl %>%
count(assessments_year_published) %>%
ggplot(aes(x = assessments_year_published, y = n)) +
geom_line(color = "steelblue") +
geom_point(color = "darkblue") +
labs(
title = "Number of assessments per year in Benin",
x = "Year",
y = "Number of assessments"
) +
theme_minimal()
Most species in Benin fall under Least Concern (LC), but some are classified as threatened. This chart highlights the proportion of assessments by category.
benin_rl %>%
filter(!is.na(assessments_red_list_category_code)) %>%
count(assessments_red_list_category_code) %>%
mutate(prop = n / sum(n)) %>%
ggplot(aes(x = reorder(assessments_red_list_category_code, -prop), y = prop)) +
geom_col(fill = "salmon") +
scale_y_continuous(labels = scales::percent_format()) +
labs(
title = "Proportion of red list categories in Benin",
x = "Red List Category",
y = "Proportion"
) +
theme_minimal()
Focusing on Critically Endangered (CR), Endangered (EN), and Vulnerable (VU) species helps track biodiversity risk.
benin_rl %>%
filter(assessments_red_list_category_code %in% c("CR", "EN", "VU")) %>%
count(assessments_year_published, assessments_red_list_category_code) %>%
ggplot(aes(x = assessments_year_published, y = n,
color = assessments_red_list_category_code)) +
geom_line() +
geom_point() +
labs(
title = "Trends of Threatened Categories (CR, EN, VU) Over Time",
x = "Year",
y = "Number of Assessments",
color = "Category"
) +
theme_minimal()
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.