The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Tutorial

library(rbioacc)
# library(ggplot2)

A Simple Example: Male Gammarus Single

Data

Load the data set with the function data(), define the duration of the exposure time_accumulation, and check if the data set is correctly imported with the function modelData(). Here the data set is called Male Gammarus Single

data("Male_Gammarus_Single")

Inference

The function fitTK() performs the inference process.

modelData_MGS <- modelData(Male_Gammarus_Single, time_accumulation = 4)
fit_MGS <- fitTK(modelData_MGS, iter = 10000)

Results

TK parameters

The 4 MCMC are stored in the object fitMCMC. The quantiles for each TK parameter can be obtained with the quantile() function.

quantile_table(fit_MGS)
#>                   2.5%          50%        97.5% parameter
#> ku        552.01815134 616.01747313 679.88263494        ku
#> kee         0.02310457   0.03388398   0.04497364       kee
#> sigmaConc   0.01083252   0.01458868   0.02095424 sigmaConc
plot(fit_MGS)

ppc(fit_MGS)

Male Gammarus Merged

data("Male_Gammarus_Merged")
data_MGM708 <- Male_Gammarus_Merged[Male_Gammarus_Merged$expw == 7.08021e-05, ]
modelData_MGM708 <- modelData(data_MGM708, time_accumulation = 4)
fit_MGM708 <- fitTK(modelData_MGM708, iter = 10000)
quantile_table(fit_MGM708)
plot(fit_MGM708)
ppc(fit_MGM708)
data_MGM141 <- Male_Gammarus_Merged[Male_Gammarus_Merged$expw == 1.41604e-04, ]
modelData_MGM141 <- modelData(data_MGM141, time_accumulation = 7)
fit_MGM141 <- fitTK(modelData_MGM141, iter = 20000)
quantile_table(fit_MGM141)
plot(fit_MGM141)
ppc(fit_MGM141)
data_MGM283 <- Male_Gammarus_Merged[Male_Gammarus_Merged$expw == 2.83208e-04, ]
modelData_MGM283 <- modelData(data_MGM283, time_accumulation = 4)
fit_MGM283 <- fitTK(modelData_MGM283, iter = 10000)
quantile_table(fit_MGM283)
plot(fit_MGM283)
ppc(fit_MGM283)

Male Gammarus seanine with growth

data("Male_Gammarus_seanine_growth")
modelData_MGSG <- modelData(Male_Gammarus_seanine_growth, time_accumulation = 1.417)
fit_MGSG <- fitTK(modelData_MGSG, iter = 10000)
quantile_table(fit_MGSG)
plot(fit_MGSG)
ppc(fit_MGSG)

Oncorhynchus

data("Oncorhynchus_two") #  Pimephales_two
data_OT440 = Oncorhynchus_two[Oncorhynchus_two$expw == 0.00440,]
modelData_OT440 <- modelData(data_OT440, time_accumulation = 49)
fit_OT440 <- fitTK(modelData_OT440, iter = 10000)
quantile_table(fit_OT440)
plot(fit_OT440)
ppc(fit_OT440)
data_OT041 <- Oncorhynchus_two[Oncorhynchus_two$expw == 0.00041,]
modelData_OT041 <- modelData(data_OT041, time_accumulation = 49)
fit_OT041 <- fitTK(modelData_OT041, iter = 10000)
quantile_table(fit_OT041)
plot(fit_OT041)
ppc(fit_OT041)

Chironomus benzo-a-pyrene

data("Chironomus_benzoapyrene")
modelData_CB <- modelData(Chironomus_benzoapyrene, time_accumulation = 3)
modelData_CB$unifMax = modelData_CB$unifMax  * 100
fit_CB <- fitTK(modelData_CB, iter = 10000)
quantile_table(fit_CB)
plot(fit_CB)
ppc(fit_CB)

Prediction

data("Male_Gammarus_Single")
modelData_MGS <- modelData(Male_Gammarus_Single, time_accumulation = 4)
fit_MGS <- fitTK(modelData_MGS, iter = 5000, chains = 3)

# Data 4 prediction should respect the exposure routes
data_4pred <- data.frame( time = 1:25, expw = 4e-5 )
predict_MGS <- predict(fit_MGS, data_4pred)
plot(predict_MGS)
# data("Male_Gammarus_seanine_growth")
# modelData_MGSG <- modelData(Male_Gammarus_seanine_growth, time_accumulation = 4)
# fit_MGSG <- fitTK(modelData_MGSG, iter = 5000, chains = 3)
# 
# # Data 4 prediction should respect the exposure routes
# data_4pred <- data.frame( time = 1:25, expw = 18 )
# predict_MGSG <- predict(fit_MGSG, data_4pred)
# plot(predict_MGSG)
data("Chiro_Creuzot")
Chiro_Creuzot <- Chiro_Creuzot[Chiro_Creuzot$replicate == 1,]
modelData_CC <- modelData(Chiro_Creuzot, time_accumulation = 1.0)
fit_CC <- fitTK(modelData_CC, iter = 5000, chains = 3)
# --------
quantile_table(fit_CC)

# Data 4 prediction should respect the exposure routes
data_4pred <- data.frame( time = 1:25, expw = 18, exps = 1200, exppw = 15 )
predict_CC <- predict(fit_CC, data_4pred)
plot(predict_CC)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.