The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
## model SIR_deterministic {
## const N = 1000; // population size
## const d_infection = 14; // duration of infection: 2 weeks
##
## state S, I, R; // susceptible, infectious, recovered
##
## obs Prevalence; // observations
##
## param R0; // basic reproduction number
##
## sub parameter {
## R0 ~ uniform(1, 3)
## }
##
## sub initial {
## S <- N - 1
## I <- 1
## R <- 0
## }
##
## sub transition { // daily time step
## inline i_beta = R0 / d_infection
## inline i_gamma = 1 / d_infection
## ode {
## dS/dt = - i_beta * S * I / N
## dI/dt = i_beta * S * I / N - i_gamma * I
## dR/dt = i_gamma * I
## }
## }
##
## sub observation {
## Prevalence ~ poisson(I)
## }
## }
## model SIR_deterministic {
## const N = 1000; // population size
## const d_infection = 14; // duration of infection: 2 weeks
##
## state S, I, R, Z; // susceptible, infectious, recovered
##
## obs Incidence; // observations
##
## param rep; //reporting rate
## param R0; // basic reproduction number
##
## sub parameter {
## rep ~ uniform(0,1)
## R0 ~ uniform(1, 3)
## }
##
## sub initial {
## S <- N - 1
## I <- 1
## R <- 0
## }
##
## sub transition { // daily time step
## inline i_lambda = R0 / d_infection * I / N
## inline i_gamma = 1 / d_infection
##
## Z <- (t_now % 7 == 0 ? 0 : Z) // reset incidence
##
## ode {
## dS/dt = - i_lambda * S
## dI/dt = i_lambda * S - i_gamma * I
## dR/dt = i_gamma * I
## dZ/dt = i_lambda * S
## }
## }
##
## sub observation {
## Incidence ~ poisson(rep * Z)
## }
## }
## model SIR_stoch_SDE {
## const h = 7; // incidence time step: 1 week
## const N = 1000; // population size
## const d_infection = 14; // duration of infection: 2 weeks
##
## noise n_transmission; // noise term
## noise n_recovery; // noise term
##
## state S, I, R, Z; // susceptible, infectious, recovered
##
## obs Incidence; // observations
##
## param rep; //reporting rate
## param R0; // basic reproduction number
##
## sub parameter {
## rep ~ uniform(0,1)
## R0 ~ uniform(1,3)
## }
##
## sub initial {
## S <- N - 1
## I <- 1
## R <- 0
## Z <- 1
## }
##
## sub transition {
##
## inline i_gamma = 1 / d_infection
## inline i_lambda = R0 / d_infection * I / N
##
## n_transmission ~ wiener() // noise terms
## n_recovery ~ wiener() // noise terms
##
## Z <- (t_now % 7 == 0 ? 0 : Z) // reset incidence
##
## ode (alg='RK4(3)', h=1e-1, atoler=1e-2, rtoler=1e-5) {
## dS/dt = - i_lambda * S - sqrt(i_lambda) * n_transmission
## dI/dt = i_lambda * S - i_gamma * I + sqrt(i_lambda) * n_transmission - sqrt(i_gamma) * n_recovery
## dR/dt = i_gamma * I + sqrt(i_gamma) * n_recovery
## dZ/dt = i_lambda * S + sqrt(i_lambda) * n_transmission
## }
## }
##
## sub observation {
## Incidence ~ poisson(rep * Z)
## }
## }
## model SIR_stoch_jump {
## const time_step = 1; // time step
## const h = 7; // incidence time step: 1 week
## const N = 1000; // population size
## const d_infection = 14; // duration of infection: 2 weeks
##
## noise n_transmission; // random transmission
## noise n_recovery; // random recovery
##
## state S, I, R, Z; // susceptible, infectious, recovered
##
## obs Incidence; // observations
##
## param rep; //reporting rate
## param R0; // basic reproduction number
##
## sub parameter {
## rep ~ uniform(0,1)
## R0 ~ uniform(1,3)
## }
##
## sub initial {
## S <- N - 1
## I <- 1
## R <- 0
## Z <- 1
## }
##
## sub transition (delta = time_step) {
## inline i_gamma = 1 / d_infection
## inline i_lambda = R0 / d_infection * I / N
##
## Z <- (t_now % h == 0 ? 0 : Z) // reset incidence every h time steps
##
## n_transmission ~ binomial(S, 1 - exp(-i_lambda * time_step))
## n_recovery ~ binomial(I, 1-exp(-i_gamma * time_step))
##
## S <- S - n_transmission
## I <- I + n_transmission - n_recovery
## R <- R + n_recovery
## Z <- Z + n_transmission
## }
##
## sub observation {
## Incidence ~ poisson(rep * Z)
## }
## }
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.