The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

rassta: Raster-Based Spatial Stratification Algorithms

Algorithms for the spatial stratification of landscapes, sampling and modeling of spatially-varying phenomena. These algorithms offer a simple framework for the stratification of geographic space based on raster layers representing landscape factors and/or factor scales. The stratification process follows a hierarchical approach, which is based on first level units (i.e., classification units) and second-level units (i.e., stratification units). Nonparametric techniques allow to measure the correspondence between the geographic space and the landscape configuration represented by the units. These correspondence metrics are useful to define sampling schemes and to model the spatial variability of environmental phenomena. The theoretical background of the algorithms and code examples are presented in Fuentes et al. (2022). <doi:10.32614/RJ-2022-036>.

Version: 1.0.6
Imports: cluster (≥ 2.1.2), data.table (≥ 1.14.0), dplyr (≥ 1.0.7), DT (≥ 0.18), foreach (≥ 1.5.1), GGally (≥ 2.1.2), ggplot2 (≥ 3.3.5), grDevices, histogram (≥ 0.0.25), KernSmooth (≥ 2.23.18), kohonen (≥ 3.0.10), plotly (≥ 4.9.4.1), rlang (≥ 0.4.11), scales (≥ 1.1.1), shiny (≥ 1.6.0), stats, stringdist (≥ 0.9.6.3), stringi (≥ 1.7.2), terra (≥ 1.3.4), utils
Suggests: testthat (≥ 3.0.0), tinytest (≥ 1.3.1), doParallel (≥ 1.0.16), mgcv (≥ 1.8.40), knitr, rmarkdown
Published: 2024-08-19
DOI: 10.32614/CRAN.package.rassta
Author: Bryan A. Fuentes ORCID iD [aut, cre], Minerva J. Dorantes ORCID iD [aut], John R. Tipton [aut], Robert J. Hijmans ORCID iD [ctb], Andrew G. Brown [ctb]
Maintainer: Bryan A. Fuentes <bryandrep at gmail.com>
BugReports: https://github.com/bafuentes/rassta/issues/
License: AGPL (≥ 3)
URL: https://bafuentes.github.io/rassta/
NeedsCompilation: no
Citation: rassta citation info
Materials: README NEWS
CRAN checks: rassta results

Documentation:

Reference manual: rassta.pdf
Vignettes: Classification Units (source, R code)
Predictive Modeling Engine (source, R code)
Stratified Non-Probability Sampling (source, R code)
Spatial Signature of Classification Units (source, R code)
Landscape Similarity to Stratification Units (source, R code)
Stratification Units (source, R code)

Downloads:

Package source: rassta_1.0.6.tar.gz
Windows binaries: r-devel: rassta_1.0.6.zip, r-release: rassta_1.0.6.zip, r-oldrel: rassta_1.0.6.zip
macOS binaries: r-release (arm64): rassta_1.0.6.tgz, r-oldrel (arm64): rassta_1.0.6.tgz, r-release (x86_64): rassta_1.0.6.tgz, r-oldrel (x86_64): rassta_1.0.6.tgz
Old sources: rassta archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=rassta to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.