The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

randomMachines

Installation

You can install the development version of randomMachines from GitHub with:

# install.packages("devtools")
devtools::install_github("MateusMaiaDS/randomMachines")

Example

This is a basic example which shows you how to solve a common binary classification problem:

library(randomMachines)
## Simple classification example
sim_train <- randomMachines::sim_class(n=100)
sim_test <- randomMachines::sim_class(n=100)
rm_mod <- randomMachines::randomMachines(y~.,train = sim_train, B = 25,prob_model = F)
rm_mod_pred <- predict(rm_mod,sim_test)

For a regression task we would have similarly

library(randomMachines)
## Simple regression example
sim_train <- randomMachines::sim_reg1(n=100)
sim_test <- randomMachines::sim_reg1(n=100)
rm_mod <- randomMachines::randomMachines(y~.,train = sim_train,B = 25)
rm_mod_pred <- predict(rm_mod,sim_test)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.