The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Ranking of Alternatives with the RAFSI Method

Introduction to the RAFSI Method

The RAFSI method is a multi-criteria decision-making technique developed by Malisa Zizovic in 2020. The rafsi package implements this method in R, allowing users to evaluate alternatives based on weighted criteria and generate a final ranking of alternatives.

Example of Usage

In this example, we will use the RAFSI method to evaluate a set of alternatives based on specific criteria and calculate their final rankings.

library(rafsi)

# Define the dataset (rows: alternatives, columns: criteria)
dataset <- matrix(c(
  180, 165, 160, 170, 185, 167,   # Criterion 1: Higher is better
  10.5, 9.2, 8.8, 9.5, 10, 8.9,   # Criterion 2: Lower is better
  15.5, 16.5, 14, 16, 14.5, 15.1, # Criterion 3: Lower is better
  160, 131, 125, 135, 143, 140,   # Criterion 4: Higher is better
  3.7, 5, 4.5, 3.4, 4.3, 4.1      # Criterion 5: Higher is better
), nrow = 6, ncol = 5, byrow = TRUE)

# Set names for the alternatives (A1 to A6)
rownames(dataset) <- c("A1", "A2", "A3", "A4", "A5", "A6")

# Define the weights for each criterion
weights <- c(0.35, 0.25, 0.15, 0.15, 0.10)

# Define the type of each criterion: 'max' for benefit, 'min' for cost
criterion_type <- c('max', 'min', 'min', 'max', 'max')

# Define the ideal values (best-case scenario) for each criterion
ideal <- c(200, 6, 10, 200, 8)

# Define the anti-ideal values (worst-case scenario) for each criterion
anti_ideal <- c(120, 12, 20, 100, 2)

# Number of criteria (n_i) and number of alternatives (n_k)
n_i <- 1
n_k <- 6

# Apply the RAFSI method
result <- rafsi_method(dataset, weights, criterion_type, ideal, anti_ideal, n_i, n_k)

# View the results
print(result)
#> $Standardized_matrix
#>       [,1]       [,2]  [,3]   [,4]       [,5]
#> A1  4.7500 133.500000 76.00  4.500 153.500000
#> A2  3.9375   4.750000  0.60 -3.560   7.250000
#> A3 -5.8750   3.416667  3.75 -3.175  11.000000
#> A4 -5.5000   8.083333  3.55  4.000 108.500000
#> A5  1.3125 108.500000 67.50  3.000   2.416667
#> A6 -6.1875  -0.250000 -2.30 -3.785   2.750000
#> 
#> $Normalized_matrix
#>          [,1]         [,2]        [,3]       [,4]       [,5]
#> A1  0.6785714  0.006420546  0.01127820  0.6428571 21.9285714
#> A2  0.5625000  0.180451128  1.42857143 -0.5085714  1.0357143
#> A3 -0.8392857  0.250871080  0.22857143 -0.4535714  1.5714286
#> A4 -0.7857143  0.106038292  0.24144869  0.5714286 15.5000000
#> A5  0.1875000  0.007899934  0.01269841  0.4285714  0.3452381
#> A6 -0.8839286 -3.428571429 -0.37267081 -0.5407143  0.3928571
#> 
#> $Ranking
#>    Alternative    Ranking
#> A1          A1  2.5300826
#> A4          A4  1.4234412
#> A2          A2  0.4835592
#> A5          A5  0.1683143
#> A3          A3 -0.1076394
#> A6          A6 -1.2642399

Interpret the Results

The result provides the ranking of the alternatives based on their performance across all criteria, considering the weights and whether each criterion is treated as a benefit or a cost.

For more detailed information on the RAFSI method, you can refer to the original paper: https://doi.org/10.3390/math8061015.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.